A. | (-∞,4) | B. | (4,+∞) | C. | (-∞,4)∪(4,+∞) | D. | (-∞,+∞) |
分析 根據(jù)基底的定義可知:平面內(nèi)的任一向量$\overrightarrow{c}$都可以唯一的表示成$\overrightarrow{c}$=$λ\overrightarrow{a}$+$μ\overrightarrow$,$\overrightarrow{a}$,$\overrightarrow$是平面內(nèi)表示所有向量的一組基底.即$\overrightarrow{a}$,$\overrightarrow$不共線即可.
解答 解:由題意可知:平面內(nèi)的任一向量$\overrightarrow{c}$都可以唯一的表示成$\overrightarrow{c}$=$λ\overrightarrow{a}$+$μ\overrightarrow$,
∴$\overrightarrow{a}$,$\overrightarrow$是平面內(nèi)表示所有向量的一組基底.
∴$\overrightarrow{a}$,$\overrightarrow$必須不共線.
可得:$\frac{m}{1}≠\frac{3m-4}{2}$
解得:m≠4.
故得m的取值范圍是(-∞,4)∪(4,+∞).
故選C.
點評 本題主要考查了基底的定義的運用.基底向量肯定是非零向量,且基底并不唯一,只要不共線就行.屬于基礎(chǔ)知識考查了.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若l∥α,l⊥m,則m⊥α | B. | 若l∥α,l⊥m,m?β,則α⊥β | ||
C. | 若l∥α,l∥m,則m∥α | D. | 若α∥β,l∥α,l∥m,m?β,則m∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -8 | B. | -4 | C. | 4 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com