【題目】給出下列命題正確的是( )
A.
B.,都有
C.“”是函數(shù)“的最小正周期為”的充要條件
D.命題是假命題,則
E.已知,則“”是“”的既不充分也不必要條件
【答案】ADE
【解析】
根據(jù)誘導公式可知,再根據(jù)正切函數(shù)的性質(zhì)即可判斷A選項是否正確;取,即可判斷B選項是否正確;對分別取和時,其最小正周期都為,即可判斷C選項是否正確;由于為假命題,所以為真命題,據(jù)此可知,且,即可求出的值;如果兩個角為直角,那么它們的正切值不存在,反過來,如果兩個角的正切值相等,那么它們可能相差,即可判斷結(jié)果.
A正確,,而,所以;B錯,當時,,故不等式不成立;C錯,,當時,,其最小正周期為;當時,,其最小正周期為,故說法不正確;D正確,因為為假命題,所以為真命題,即不存在,使,故,且,解得或;E正確,如果兩個角為直角,那么它們的正切值不存在,反過來,如果兩個角的正切值相等,那么它們可能相差,故反之不成立.綜上,ADE正確.
故選:ADE.
科目:高中數(shù)學 來源: 題型:
【題目】“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于同一個常數(shù).若第一個單音的頻率為f,第三個單音的頻率為,則第十個單音的頻率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),則下列結(jié)論正確的是__________.(寫出所有正確的編號)①的最小正周期為;②在區(qū)間上單調(diào)遞增;③取得最大值的的集合為 ④將的圖像向左平移個單位,得到一個奇函數(shù)的圖像
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中.
(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)若旋轉(zhuǎn)的弧度數(shù)與單位時間內(nèi)煤氣輸出量成正比,那么為多少時,燒開一壺水最省煤氣?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)A、B是橢圓上的兩點,點是線段AB的中點,線段AB的垂直平分線與橢圓相交于C、D兩點.
(1)求直線AB的方程;
(2)判斷A、B、C、D四點是否在同一個圓上?若是求出圓的方程,若不是說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】射擊測試有兩種方案,方案1:先在甲靶射擊一次,以后都在乙靶射擊;方案2:始終在乙靶射擊,某射手命中甲靶的概率為,命中一次得3分;命中乙靶的概率為,命中一次得2分,若沒有命中則得0分,用隨機變量表示該射手一次測試累計得分,如果的值不低于3分就認為通過測試,立即停止射擊;否則繼續(xù)射擊,但一次測試最多打靶3次,每次射擊的結(jié)果相互獨立。
(1)如果該射手選擇方案1,求其測試結(jié)束后所得分的分布列和數(shù)學期望E;
(2)該射手選擇哪種方案通過測試的可能性大?請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,圓C的參數(shù)方程(φ為參數(shù)).以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求圓C的極坐標方程;
(Ⅱ)直線l的極坐標方程是ρ(sinθ+)=3,射線OM:θ=與圓C的交點為O,P,與直線l的交點為Q,求線段PQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com