【題目】某廠有容量300噸的水塔一個,每天從早六點到晚十點供應生活和生產(chǎn)用水,已知:該廠生活用水每小時10噸,工業(yè)用水總量與時間單位:小時,規(guī)定早晨六點時的函數(shù)關系為,水塔的進水量有10級,第一級每小時進水10噸,以后每提高一級, 進水量增加10噸.若某天水塔原有水100噸,在供應同時打開進水管.問該天進水量應選擇幾級,既能保證該廠用水即水塔中水不空,又不會使水溢出?

【答案】進水選擇4級

【解析】

試題分析:設進水選擇第時刻水塔中的水容量等于原有的水加進水量,減生活用水和工業(yè)用水,即,,求解的取值范圍.

試題解析:設水塔進水量選擇第級,在時刻水塔中的水容量等于水塔中的存水量100噸加進水量噸,減去生產(chǎn)用水噸,在減去工業(yè)用水噸,即;

若水塔中的水量既能保證該廠用水,又不會使水溢出,則一定有.

,

所以對一切恒成立.

因為,,

所以,即.即進水選擇4級.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

I)設,求的單調區(qū)間;

II)若處取得極大值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),曲線y=f(x)在點(1, f(1))處的切線方程為y=e(x-1)+2.

(1)求 (2)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心是坐標原點,焦點在軸上,離心率為,又橢圓上任一點到兩焦點的距離和為過右焦點軸不垂直的直線交橢圓于,兩點

1求橢圓的方程;

2在線段上是否存在點,使得?若存在求出的取值范圍;若不存在

說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角的對邊分別為,若 ().

(1)判斷的形狀;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量(升)關于行駛速度(千米/小時)的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.

(1)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?

(2)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)求函數(shù)的單調區(qū)間;

(2)當時,是否存在整數(shù),使不等式恒成立?若存在,求整數(shù)的值;若不存在,則說明理由;

(3)關于的方程上恰有兩個相異實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,).

(1)若的部分圖像如圖所示,的解析式;

(2)在(1)的條件下,求最小正實數(shù),使得函數(shù)的圖象向左平移個單位后所對應的函數(shù)是偶函數(shù);

(3)若上是單調遞增函數(shù),的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某棋類游戲的規(guī)則如下:棋子的初始位置在起點處,玩家每擲出一枚骰子,朝上一面的點數(shù)即為向終點方向前進的格子數(shù),(比如玩家一開始擲出的骰子點數(shù)為3,則走到炸彈所在位置),若踩到炸彈則返回起點重新開始,若達到終點則游戲結束.現(xiàn)在已知小明擲完三次骰子后游戲恰好結束,則所有不同的情況種數(shù)__________.

.

查看答案和解析>>

同步練習冊答案