【題目】某四棱錐的三視圖如圖所示,該四棱錐外接球的體積為( )

A. B. C. D.

【答案】C

【解析】該四棱錐的底面是正方形,其中一條側(cè)棱與底面垂直,所以該四棱錐的外接球就是它所在的長方體的外接球,半徑,所以體積,故選D.

(1)由幾何體的直觀圖求三視圖.注意正視圖、側(cè)視圖和俯視圖的觀察方向,注意看到的部分用實(shí)線表示,不能看到的部分用虛線表示.

(2)由幾何體的部分視圖畫出剩余的部分視圖.先根據(jù)已知的一部分三視圖,還原、推測直觀圖的可能形式,然后再找其剩下部分三視圖的可能形式.當(dāng)然作為選擇題,也可將選項(xiàng)逐項(xiàng)代入,再看看給出的部分三視圖是否符合.

(3)由幾何體的三視圖還原幾何體的形狀.要熟悉柱、錐、臺、球的三視圖,明確三視圖的形成原理,結(jié)合空間想象將三視圖還原為實(shí)物圖.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,,是6與的等差中項(xiàng).

(1)求數(shù)列的通項(xiàng)公式;

(2)是否存在正整數(shù),使不等式恒成立,若存在,求出的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在區(qū)間不單調(diào),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時,不等式恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD-A1B1C1D1,E、F分別是BB1CD的中點(diǎn).

()證明:ADD1F;

()AED1F所成的角;

()證明:面AEDA1FD1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的方程為:,為常數(shù)).

(Ⅰ)判斷曲線的形狀;

(Ⅱ)設(shè)直線與曲線交于不同的兩點(diǎn)、,且,求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線處的切線的方程為,求實(shí)數(shù)的值;

(2)設(shè),若對任意兩個不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;

(3)若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點(diǎn)分別為,短軸的兩個端點(diǎn)分別為

1)若為等邊三角形,求橢圓的方程;

2)若橢圓的短軸長為2,過點(diǎn)的直線與橢圓相交于、兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,為等邊三角形,

,分別為,的中點(diǎn).

(I)求證:平面;

(II)求證:平面平面

(III)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平行四邊形中, , 分別為的中點(diǎn).現(xiàn)把平行四邊形沿折起,如圖(2)所示,連結(jié).

1)求證: ;

2)若,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案