【題目】已知函數(shù),,其中e是自然對(duì)數(shù)的底數(shù).

1)若曲線處的切線與曲線也相切.

①求實(shí)數(shù)a的值;

②求函數(shù)的單調(diào)區(qū)間;

2)設(shè),求證:當(dāng)時(shí),恰好有2個(gè)零點(diǎn).

【答案】1)①,②函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2)證明見(jiàn)解析

【解析】

1)①利用導(dǎo)數(shù)的幾何意義求出在處的切線方程,再利用切線與曲線也相切,可求得的值;②由①知,對(duì)絕對(duì)值內(nèi)的數(shù)進(jìn)行分類討論,再利用導(dǎo)數(shù)分別研究分段函數(shù)的單調(diào)性.

2)由,得,令,,當(dāng)時(shí),,故上單調(diào)遞增,再利用零點(diǎn)存在定理證明函數(shù)的極小值小于0,及,即證得結(jié)論;

1)①由,所以切線的斜率

因?yàn)榍悬c(diǎn)坐標(biāo)為,所以切線的方程為

設(shè)曲線的切點(diǎn)坐標(biāo)為

,

所以,得

所以切點(diǎn)坐標(biāo)為

因?yàn)辄c(diǎn)也在直線上.所以

②由①知

當(dāng)時(shí),,

因?yàn)?/span>恒成立,所以上單調(diào)遞增.

當(dāng)時(shí),

所以

因?yàn)?/span>恒成立,所以上單調(diào)遞增.

注意到,所以當(dāng)時(shí),;當(dāng)時(shí),

所以上單調(diào)遞減,在上單調(diào)遞增.

綜上,函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為

2)由,得

,當(dāng)時(shí),,

上單調(diào)遞增.

又因?yàn)?/span>,且,

所以上有唯一解,從而上有唯一解.

不妨設(shè)為,則

當(dāng)時(shí),,所以上單調(diào)遞減;

當(dāng)時(shí),,所以上單調(diào)遞增.

的唯一極值點(diǎn).

,則當(dāng)時(shí),,所以上單調(diào)遞減,

從而當(dāng)時(shí),,即,

所以,

又因?yàn)?/span>,所以上有唯一零點(diǎn).

又因?yàn)?/span>上有唯一零點(diǎn),為1,

所以上恰好有2個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形和菱形所在的平面相互垂直,,的中點(diǎn).

(Ⅰ)求證:平面

(Ⅱ),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為圓上一點(diǎn),過(guò)點(diǎn)軸的垂線交軸于點(diǎn),點(diǎn)滿足

(1)求動(dòng)點(diǎn)的軌跡方程;

(2)設(shè)為直線上一點(diǎn),為坐標(biāo)原點(diǎn),且,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)號(hào)為12,3的三位小學(xué)生,在課余時(shí)間一起玩“擲骰子爬樓梯”游戲,規(guī)則如下:投擲一顆骰子,將每次出現(xiàn)點(diǎn)數(shù)除以3,若學(xué)號(hào)與之同余(同除以3余數(shù)相同),則該小學(xué)生可以上2階樓梯,另外兩位只能上1階樓梯,假定他們都是從平地(0階樓梯)開(kāi)始向上爬,且樓梯數(shù)足夠多.

1)經(jīng)過(guò)2次投擲骰子后,學(xué)號(hào)為1的同學(xué)站在第X階樓梯上,試求X的分布列;

2)經(jīng)過(guò)多次投擲后,學(xué)號(hào)為3的小學(xué)生能站在第n階樓梯的概率記為,試求,的值,并探究數(shù)列可能滿足的一個(gè)遞推關(guān)系和通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,且經(jīng)過(guò)點(diǎn),是拋物線上一點(diǎn),過(guò)點(diǎn)作拋物線的切線,與橢圓交于,兩點(diǎn).

1)求橢圓的方程;

2)若直線平分弦,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,把滿足條件的所有數(shù)列構(gòu)成的集合記為

1)若數(shù)列的通項(xiàng)為,則是否屬于

2)若數(shù)列是等差數(shù)列,且,求的取值范圍;

3)若數(shù)列的各項(xiàng)均為正數(shù),且,數(shù)列中是否存在無(wú)窮多項(xiàng)依次成等差數(shù)列,若存在,給出一個(gè)數(shù)列的通項(xiàng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)是曲線上的動(dòng)點(diǎn),點(diǎn)的延長(zhǎng)線上,且,點(diǎn)的軌跡為

(1)求直線及曲線的極坐標(biāo)方程;

(2)若射線與直線交于點(diǎn),與曲線交于點(diǎn)(與原點(diǎn)不重合),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且的最小值為

1)求實(shí)數(shù)的值及函數(shù)的單調(diào)遞減區(qū)間;

2)當(dāng)時(shí),若函數(shù)有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的值

2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案