已知函數(shù)f(x)=
1
3
x3-
1
2
(m+3)x2+(m+6)x,x∈R.(其中m為常數(shù))
(1)當(dāng)m=4時(shí),求函數(shù)的極值點(diǎn)和極值;
(2)若函數(shù)y=f(x)在區(qū)間(0,+∞)上有兩個(gè)極值點(diǎn),求實(shí)數(shù)m的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)根據(jù)到導(dǎo)數(shù)和函數(shù)的極值的關(guān)系即可求出.
(2)y=f(x)在區(qū)間(0,+∞)上有兩個(gè)極值點(diǎn),等價(jià)于f′(x)=0在(0,+∞)有兩個(gè)正根,問題得以解決.
解答: 解:函數(shù)的定義域?yàn)镽
(1)當(dāng)m=4時(shí),f(x)=
1
3
x3-
7
2
x2+10x,
∴f′(x)=x2-7x+10,令f′(x)>0,解得x>5或x<2.令令f′(x)<0,解得2<x<5列表
x(-∞,2)2(2,5)5(5,+∞)
f′(x)+0-0+
f(x)
26
3
25
6
所以函數(shù)的極大值點(diǎn)是x=2,極大值是
26
3
;函數(shù)的極小值點(diǎn)是x=5,極小值是
25
6

(2)f′(x)=x2-(m+3)x+m+6,要使函數(shù)y=f(x)在(0,+∞)有兩個(gè)極值點(diǎn),則
△=(m+3)2-4(m+6)>0
m+3>0
m+6>0

解得m>3.
故實(shí)數(shù)m的取值范圍為(3,+∞)
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)和函數(shù)的極值的關(guān)系,以及函數(shù)的零點(diǎn)和方程的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(m-4)x3+10x在[1,2]上最大值為4,則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2-4x+a,a是常數(shù),若0≤x<3,求函數(shù)y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓內(nèi)接四邊形ABCD的邊AB=1,BC=3,CD=DA=2.
(Ⅰ)求角C的大小和BD的長;
(Ⅱ)求四邊形ABCD的面積及外接圓半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
2
-y2=-1的離心率為( 。
A、
3
3
B、
6
2
C、
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:x2-
y2
2
=1,過點(diǎn)A(3,0)作直線l與C交于P、Q兩點(diǎn),若PQ的長等于雙曲線C的實(shí)軸長的4倍,求l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(2
3
sin
x
4
,2),
n
=(cos
x
4
,cos2
x
4
).函數(shù)f(x)=
m
n

(Ⅰ)若f(x)=
1
2
,求cos(x+
π
3
)的值;
(Ⅱ)在△ABC中,角A、B、C的對(duì)邊分別是a、b、c,且滿足(2a-c)cosB=bcosC,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
4
+
y2
3
=1的左、右頂點(diǎn)分別為A1,A2,點(diǎn)P在C上且直線PA2的斜率的取值范圍是[-3,-1],那么直線PA1斜率的取值范圍是( 。
A、[
1
4
,
3
4
]
B、[
1
2
3
4
]
C、[
1
2
,1]
D、[
3
4
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:x>1或x<-3,條件q:x>a,且q是p的充分而不必要條件,則a的取值范圍是( 。
A、a≥1B、a≤1
C、a≥-3D、a≤-3

查看答案和解析>>

同步練習(xí)冊(cè)答案