【題目】已知函數(shù).

1)若是奇函數(shù),求的值;

2)若,且對任意的實數(shù)都成立,求的取值范圍;

3)對于任意的,總有,求的取值范圍.

【答案】10;(2;(3.

【解析】

1)根據(jù)奇函數(shù)的判斷方法,可得結(jié)果

2)利用換元法,結(jié)合構(gòu)造函數(shù)可得,然后根據(jù)討論對稱軸與的位置,可得結(jié)果.

3)根據(jù)題意等價轉(zhuǎn)換為,結(jié)合分類討論的方法,討論與區(qū)間的位置關(guān)系,判斷函數(shù)的單調(diào)性并求出最值,可得結(jié)果.

1,

由對任意恒成立,所以.

2)依題意:

,

,

,

當(dāng)對稱軸時,

,,

當(dāng)對稱軸時,

,,則,

綜上:.

3)法1:取,

可得,,

所以,.

函數(shù)在區(qū)間上的最小值

最大值為在,所以

解得:.

2:分四種情況進行討論,

當(dāng)時,即時,

上單調(diào)增,

,,

當(dāng)時,即時,

上單調(diào)減,

,,,

當(dāng),即

,

,

,∴.

當(dāng),即

,,

,

,∴.

綜上,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,(本題不作圖不得分)

(1)求 的最大值和最小值;

(2)求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在的偶函數(shù),且.當(dāng)時,,若方程300個不同的實數(shù)根,則實數(shù)m的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

某學(xué)校高一數(shù)學(xué)興趣小組對學(xué)生每周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀(體育成績滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關(guān)系進行分析研究,他們從本校初二,初三,高一,高二,高三年級各隨機抽取了40名學(xué)生,記錄并整理了這些學(xué)生周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:

初二

初三

高一

高二

高三

周平均體育鍛煉小時數(shù)工(單位:小時)

14

11

13

12

9

體育成績優(yōu)秀人數(shù)y(單位:人)

35

26

32

26

19

該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.

1)若選取的是初三,高一,高二的3組數(shù)據(jù),請根據(jù)這3組數(shù)據(jù),求出y關(guān)于x的線性回歸方程

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過1,則認為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?

參考數(shù)據(jù):,.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.

1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

2)估計該公司投入4萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x(單位:萬元)

1

2

3

4

5

銷售收益y(單位:萬元)

1

3

4

7

表中的數(shù)據(jù)顯示,xy之間存在線性相關(guān)關(guān)系,請將(2)的結(jié)果填入上表的空白欄,并計算y關(guān)于x的回歸方程.

回歸直線的斜率和截距的最小二乘法估計公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》里有一道關(guān)于玉石的問題:“今有玉方一寸,重七兩;石方一寸,重六兩.今有石方三寸,中有玉,并重十一斤(176兩)問玉、石重各幾何?”如圖所示的程序框圖反映了對此題的一個求解算法,運行該程序框圖,則輸出的,分別為( )

A.9878B.96,80C.94,74D.9272

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸垂直.

1)求的單調(diào)區(qū)間;

2)設(shè),對任意,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E:的焦點在軸上,AE的左頂點,斜率為k k > 0)的直線交EA,M兩點,點NE上,MA⊥NA.

)當(dāng)t=4,時,求△AMN的面積;

)當(dāng)時,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某老師是省級課題組的成員,主要研究課堂教學(xué)目標(biāo)達成度,為方便研究,從實驗班中隨機抽取30次的隨堂測試成績進行數(shù)據(jù)分析.已知學(xué)生甲的30次隨堂測試成績?nèi)缦拢M分為100分):

1)把學(xué)生甲的成績按,,,,分成6組,列出頻率分布表,并畫出頻率分布直方圖:

2)為更好的分析學(xué)生甲存在的問題,從隨堂測試成績50分以下(不包括50分)的試卷中隨機抽取3份進行分析,求恰有2份成績在內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊答案