數(shù)列{an}前n項和記為Sn,且an>0,Sn=
1
8
(an+2)2(n∈N*)

(1)求數(shù)列{an}通項公式an
(2)若bn滿足bn=(t-1)
an+2
4
(t>1)
,Tn為數(shù)列{bn}前n項和,求:Tn
(3)在(2)的條件下求
lim
n→∞
Tn
Tn+1
分析:(1)利用已知表達式,寫出n-1時的表達式,通過作差,利用數(shù)列是正數(shù)數(shù)列,判斷數(shù)列{an}是等差數(shù)列,然后求出通項公式an
(2)利用(1)化簡bn=(t-1)
an+2
4
(t>1)
,判斷數(shù)列是等比數(shù)列,然后求解數(shù)列{bn}前n項和Tn
(3)在(2)的條件下求
lim
n→∞
Tn
Tn+1
.通過t的范圍討論,利用數(shù)列極限 運算法則求解即可.
解答:解:(1)Sn=
1
8
(an+2)2
可得Sn-1=
1
8
(an-1+2)2
,n≥2.
兩式作差可得:8an=an2+4an-an-12-4an-1,
即:(an-an-1-4)(an+an-1)=0,
∵數(shù)列{an}中,an>0,
∴an-an-1-4=0,
∴{an}是等差數(shù)列.又a1=S1=
1
8
(a1+2)2
,
解得a1=2.
∴an=2+(n-1)×4=4n-2.
數(shù)列{an}通項公式an=4n-2.
(2)若bn滿足bn=(t-1)
an+2
4
(t>1)

bn=(t-1)
4n-2+2
4
=(t-1)n
數(shù)列{bn}是首項為t-1,公比為t-1的等比數(shù)列,
Tn=
(t-1)[1-(t-1)n]
1-t+1
=
(t-1)[1-(t-1)n]
-t

(3)
Tn
Tn+1
=
(t-1)[1-(t-1)n]
-t
(t-1)[1-(t-1)n+1]
-t
=
1-(t-1)n
1-(t-1)n+1
,
lim
n→∞
Tn
Tn+1
=
lim
n→∞
1-(t-1)n
1-(t-1)n+1

當(dāng)t∈(1,2]時,t-1∈(0,1],
lim
n→∞
Tn
Tn+1
=
lim
n→∞
1-(t-1)n
1-(t-1)n+1
=1.
當(dāng)t∈(2,+∞)時,t-1∈(1,+∞),
lim
n→∞
Tn
Tn+1
=
lim
n→∞
1-(t-1)n
1-(t-1)n+1
=
lim
n→∞
1-(t-1)n
(t-1)n+1
1-(t-1)n+1
(t-1)n+1
=
1
t-1
點評:本題考查數(shù)列的遞推關(guān)系式以及數(shù)列的判斷,通項公式的求法,數(shù)列極限的求法,考查轉(zhuǎn)化思想以及計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}前n項和為Sn,且Sn=an2+bn+c(a,b,c∈R),已知a1=-28,S2=-52,S5=-100.
(1)求數(shù)列{an}的通項公式.
(2)求使得Sn最小的序號n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

Sn為數(shù)列{an}前n項和,a1=2,且an+1=Sn+1,則an=
2,n=1
 
.
 
.
 
.
 
.
 
.
,n≥2
.橫線上填
3×2n-2
3×2n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項均為正數(shù)的數(shù)列{an}前n項和為Sn,(p-1)Sn=p2-an,n∈N*,p>0,且p≠1,數(shù)列{bn}滿足bn=2logpan
(1)求an,bn;
(2)若p=
1
2
,設(shè)數(shù)列{
bn
an
}
的前n項和為Tn,求證:0<Tn≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•武漢模擬)已知點(an,an-1)在曲線f(x)=
(    )
x
上,且a1=1.
(1)求f(x)的定義域;
(2)求證:
1
4
(n+1)
2
3
-1≤
1
a1
+
1
a2
+…+
1
an
≤4(n+1)
2
3
-1
(n∈N*)
(3)求證:數(shù)列{an}前n項和Sn
(3n+2)
3n
2
-
3
2
(n≥1,n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

Sn為數(shù)列{an}前n項和,若S n=2an-2(n∈N+),則a2等于(  )

查看答案和解析>>

同步練習(xí)冊答案