已知函數(shù)f(x)=4cosx•sin(x+
π
6
)+a的最大值為2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)利用兩角和公式和倍角公式對函數(shù)解析式化簡整理,利用函數(shù)的最大值求得a,進(jìn)而求得函數(shù)解析式和最小正周期.
(2)利用正弦函數(shù)圖象的性質(zhì),求得函數(shù)遞增區(qū)間.
解答: 解:(1)f(x)=4cosx•sin(x+
π
6
)+a=2
3
sinxcosx+2cos2x+a=
3
sin2x+cos2x+1+a=2sin(2x+
π
6
)+1+a,
∵sin(2x+
π
6
)≤1,
∴f(x)≤2+1+a,
∴由已知可得2+1+a=2,
∴a=-1,
∴f(x)=2sin(2x+
π
6
),
∴T=
2
=π.
(2)函數(shù)f(x)=2sin(2x+
π
6
),
∴當(dāng)2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
時,即kπ-
π
3
≤x≤kπ+
π
6
,k∈Z,函數(shù)單調(diào)增,
∴函數(shù)的單調(diào)遞增區(qū)間為[kπ-
π
3
,kπ+
π
6
,](k∈Z).
點(diǎn)評:本題主要考查了三角函數(shù)恒等變換的應(yīng)用,三角函數(shù)圖象與性質(zhì).要求學(xué)生對三角函數(shù)圖象能熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給定區(qū)域D:
x+4y≥4
x+y≤4
x>0
,令點(diǎn)集M={(x0,y0)∈D|x0,y0∈Z},且點(diǎn)(x0,y0)是目標(biāo)函數(shù)z=x+y在區(qū)域D上取最值的最優(yōu)解},則集合M中的點(diǎn)最多可確定直線的條數(shù)是( 。
A、4條B、5條C、6條D、10條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x+y≥1
x-y≥0
2x-y-2≤0
,則目標(biāo)函數(shù)z=x-2y的最大值為( 。
A、
3
2
B、1
C、-
1
2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=4y的焦點(diǎn)為F,直線x-2y+4=0與C交于A、B兩點(diǎn),則sin∠AFB=( 。
A、
4
5
B、
3
5
C、
3
4
D、
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在邊長為3的等邊三角形ABC中,D,E分別是AB,AC邊上的點(diǎn),AD=AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,將△ABF沿AF折起,得到如圖2所示的三棱錐A-BCF,其中BC=
3
2
2

(Ⅰ)證明:DE∥平面BCF;
(Ⅱ)證明:CF⊥平面ABF;
(Ⅲ)當(dāng)AD=
2
3
AB時,求三棱錐F-DEG的體積VD-EFG

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a2+b2=1,c2+d2=1.
(Ⅰ)求證:ab+cd≤1.
(Ⅱ)求a+
3
b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某電視臺對什么年齡段的人更關(guān)注“2014兩會話題”情況進(jìn)行調(diào)查,隨機(jī)采訪了50人,受訪者的年齡頻數(shù)分布及關(guān)注“兩會話題”的人數(shù)如下表:
年齡(單位:歲) [0,18) [18,26) [26,31) [31,36) [36,40) [40,80)
受訪人數(shù) 6 15 10 9 5 5
關(guān)注“兩會話題”人數(shù) 3 13 7 6 2 1
(Ⅰ)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并回答是否有97.5%的把握認(rèn)為年齡以36歲為分界點(diǎn)的市民對“兩會話題”的關(guān)注度有差異?
  36歲以下 36歲以上(含36歲) 合計(jì)
關(guān)注“兩會”      
不關(guān)注“兩會”      
合計(jì)      
附:下面的臨界值表供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
K 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
(Ⅱ)若從年齡在[36,40)歲的受訪對象中隨機(jī)選取三人進(jìn)行調(diào)查,求至少有一人關(guān)注“”兩會話題”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,AA1=A1B1=4,D、E分別為AA1與A1B1的中點(diǎn).
(1)求異面直線C1D與BE的夾角;
(2)求四面體BDEC1體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域,并求出最值.
(1)f(x)=2sin(x+
π
3
),x∈[
π
6
,
π
2
]
(2)f(x)=2cos2x+5sinx-4.

查看答案和解析>>

同步練習(xí)冊答案