設(shè)向量
a
(x)=(cosx,sinx),0≤x≤π,則函數(shù)f(x)=2
a
π
2
)•
a
π
6
)的值為
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算,兩角和與差的正弦函數(shù)
專題:平面向量及應(yīng)用
分析:由已知,將f(x)的解析式利用向量的數(shù)量積求出,然后根據(jù)解析式特點(diǎn)求最值.
解答: 解:因?yàn)橄蛄?span id="ce0k6g6" class="MathJye">
a
(x)=(cosx,sinx),0≤x≤π,
則函數(shù)f(x)=2
a
π
2
)•
a
π
6
)=2(cos
π
2
+sin
π
2
)•(cos
π
6
,sin
π
6
)=2(0,1)•(
3
2
1
2
)=1;
故答案為:1.
點(diǎn)評(píng):本題考查了向量的數(shù)量積的坐標(biāo)運(yùn)算,兩個(gè)向量的數(shù)量積等于它們對(duì)應(yīng)坐標(biāo)乘積的和.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(1+x)+loga(1-x),其中a>0,a≠1.
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)是否具有奇偶性,如果有,請(qǐng)給出證明;如果沒(méi)有,請(qǐng)說(shuō)明理由;
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的首項(xiàng)為8,Sn是其前n項(xiàng)的和,某同學(xué)經(jīng)計(jì)算得S1=8,S2=20,S3=36,S4=65,后來(lái)該同學(xué)發(fā)現(xiàn)其中一個(gè)數(shù)算錯(cuò)了,則該數(shù)為( 。
A、S1
B、S2
C、S3
D、S4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:“關(guān)于x的方程x2+mx+1=0有兩個(gè)不等的負(fù)實(shí)根”;命題q:“冪函數(shù)f(x)=x2m-5在(0,+∞)上是減函數(shù)”,若p或q為真,p且q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若P1,P2,…,P9是y2=4x上的點(diǎn),它們的橫坐標(biāo)依次為x1,x2,…,x9,F(xiàn)是拋物線的焦點(diǎn),若x1,x2,…,xn(n∈N*)成等差數(shù)列且x1+x2+…+x9=45,則|P5F|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-xlnx,g(x)=f(x)-xf′(a),其中f′(a)表示函數(shù)f(x)在x=a處的導(dǎo)數(shù),a為正常數(shù),且
(1)求g(x)的單調(diào)區(qū)間;
(2)對(duì)任意的正實(shí)數(shù)x1,x2,且x1<x2,證明:(x2-x1)f′(x2)<f(x2)-f(x1)<(x2-x1)f′(x1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,∠A、∠B、∠C所對(duì)的邊分別是a、b、c,且BC邊上的高等于BC的一半,則
c
b
+
b
c
最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐S-ABCD的底面是平行四邊形,O是四棱錐內(nèi)任意一點(diǎn),則
VO-SAB+VO-SCD
VO-SBC+VO-SDA
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)滿足f(0)=1且有f(x+1)=f(x)+2x.
(1)求f(x);
(2)設(shè)g(x)=f(x)+mx在[-1,2]上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案