某工廠生產(chǎn)甲、乙、丙三種型號的產(chǎn)品,產(chǎn)品數(shù)量之比為3:5:7,現(xiàn)用分層抽樣的方法抽出容量為n的樣本,其中甲種產(chǎn)品有18件,則樣本容量n=(  )
A、45B、54C、90D、126
考點:分層抽樣方法
專題:概率與統(tǒng)計
分析:由分層抽樣的特點,用A種型號產(chǎn)品的樣本數(shù)除以A種型號產(chǎn)品所占的比例,即得樣本的容量n.
解答: 解:A種型號產(chǎn)品所占的比例為
3
3+5+7
=
1
5
,
18÷
1
5
=90
,故樣本容量n=90.
故選:C.
點評:本題考查分層抽樣的定義和方法,各層的個體數(shù)之比等于各層對應(yīng)的樣本數(shù)之比,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.
(1)對于任意a∈[-2,2]都有f(x)>g(x) 成立,求x的取值范圍;
(2)當(dāng)a>0 時對任意x1,x2∈[-3,-1]恒有f(x1)>-ag(x2),求實數(shù)a的取值范圍;
(3)若存在x0∈R,使得f(x0)<0與g(x0)<0同時成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,側(cè)面PAD是邊長為2的等邊三角形,且與底面ABCD垂直,E為PA的中點.
(1)求證:DE∥平面PBC;
(2)求三棱錐A-PBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn=3n-n2,n∈N*
(1)當(dāng)n取什么值時Sn最大,最大值是多少?
(2)求證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x2-4x-5|.
(1)在區(qū)間[-2,6]上畫出函數(shù)f(x)的圖象;
(2)設(shè)集合A={x|f(x)≥5},B=(-∞,-2]∪[0,4]∪[6,+∞).試判斷集合A和B之間的關(guān)系,并給出證明;
(3)當(dāng)k>2時,求證:在區(qū)間[-1,5]上,y=kx+3k的圖象位于函數(shù)f(x)圖象的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=log 
1
3
1
3
,b=log 
1
2
1
3
,c=(
1
2
0.3 則(  )
A、c>b>a
B、b>a>c
C、b>c>a
D、a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x+2|-|x-1|≤0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)和g(x)分別由下表給出,那么g[f(2)]=
 

x123x123
f(x)231g(x)321

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
4
3-x
的定義域是
 

查看答案和解析>>

同步練習(xí)冊答案