【題目】已知函數(shù), ),),且在點處的切線方程為.

(Ⅰ)求 的值;

(Ⅱ)若函數(shù)在區(qū)間內有且僅有一個極值點,求的取值范圍;

(Ⅲ)設)為兩曲線),的交點,且兩曲線在交點處的切線分別為 .若取,試判斷當直線, 軸圍成等腰三角形時值的個數(shù)并說明理由.

【答案】(1), .(2).(3), 能與軸圍成等腰三角形時, 值的個數(shù)有2個.

【解析】試題分析:

(1)利用導函數(shù)與切線的關系可得, .

(2)構造函數(shù);結合導函數(shù)的性質分類討論可得的取值范圍是.

(3) 設兩切線, 的傾斜角分別為 ,分類討論可得 能與軸圍成等腰三角形時, 值的個數(shù)有2個.

試題解析:

解:(Ⅰ) , ,又, .

(Ⅱ)

, .

,當且僅當時,函數(shù)在區(qū)間內有且僅有一個極值點.

,即,當;當,函數(shù)有極大值點,

,即,當;當,函數(shù)有極大值點

綜上, 的取值范圍是.

(Ⅲ)當時,設兩切線 的傾斜角分別為,

, , 均為銳角,

,即時,若直線, 能與軸圍成等腰三角形,則

,即時,若直線 能與軸圍成等腰三角形,則.

得, ,得,

,此方程有唯一解 , 能與軸圍成一個等腰三角形.

得, ,得,即,

,

時, , 單調遞增,則單調遞增,

由于,且,所以,則,

即方程有唯一解,直線, 能與軸圍成一個等腰三角形.

因此,當時,有兩處符合題意,所以, 能與軸圍成等腰三角形時, 值的個數(shù)有2個.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標方程;

(2)設圓與直線交于點,若點的坐標為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}中,已知對任意n∈N* , a1+a2+a3+…+an=3n﹣1,則a12+a22+a32+…+an2等于( )
A.(3n﹣1)2
B.
C.9n﹣1
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:函數(shù)f(x)=lg(ax2﹣x+ a)的定義域為R;q:a≥1.如果命題“p∨q為真,p∧q為假”,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是矩形,平面 平面,且是邊長為的等邊三角形, ,點的中點.

(1)求證: 平面 ;

(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某早餐店每天制作甲、乙兩種口味的糕點共n(nN*)份,每份糕點的成本1元,售價2元,如果當天賣不完,剩下的糕點作廢品處理.該早餐店發(fā)現(xiàn)這兩種糕點每天都有剩余,為此整理了過往100天這兩種糕點的日銷量(單位:份),得到如下的統(tǒng)計數(shù)據:

甲口味糕點日銷量

48

49

50

51

天數(shù)

20

40

20

20

乙口味糕點日銷量

48

49

50

51

天數(shù)

40

30

20

10

以這100天記錄的各銷量的頻率作為各銷量的概率,假設這兩種糕點的日銷量相互獨立.

(1)記該店這兩種糕點每日的總銷量為X份,求X的分布列

(2)早餐店為了減少浪費,提升利潤,決定調整每天制作糕點的份數(shù)

①若產生浪費的概率不超過0.6,求n的最大值;

②以銷售這兩種糕點的日總利潤的期望值為決策依據,在每天所制糕點能全部賣完與n=98之中選其一,應選哪個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x-3)ex+ax,aR

(1)當a=1時,求曲線f(x)在點(2,f(2))處的切線方程;

(2)當a[0,e)時,設函數(shù)f(x)在(1,+)上的最小值為g(a),求函數(shù)g(a)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設向量 =(sin x,cos x), =(sin x, sin x),x∈R,函數(shù)f(x)= ,求:
(1)f(x)的最小正周期;
(2)f(x)在區(qū)間[0,1]上的最大值和最小值,以及取得最大值和最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“中國式過馬路”是網友對部分中國人集體闖紅燈現(xiàn)象的一種調侃,即“湊夠一撮人就可以走了,和紅綠燈無關.”出現(xiàn)這種現(xiàn)象是大家受法不責眾的“從眾”心理影響,從而不顧及交通安全.某校對全校學生過馬路方式進行調查,在所有參與調查的人中,“跟從別人闖紅燈”“從不闖紅燈”“帶頭闖紅燈”人數(shù)如表所示:

跟從別人闖紅燈

從不闖紅燈

帶頭闖紅燈

男生

800

450

200

女生

100

150

300


(1)在所有參與調查的人中,用分層抽樣的方法抽取n人,已知“跟從別人闖紅燈”的人中抽取45人,求n的值;
(2)在“帶頭闖紅燈”的人中,將男生的200人編號為1,2,…,200;將女生的300人編號為201,202,…,500,用系統(tǒng)抽樣的方法抽取4人參加“文明交通”宣傳活動,若抽取的第一個人的編號為100,把抽取的4人看成一個總體,從這4人中任選取2人,求這兩人均是女生的概率.

查看答案和解析>>

同步練習冊答案