【題目】總體由編號為01,02...,39,4040個個體組成.利用下面的隨機(jī)數(shù)表選取5個個體,選取方法是從隨機(jī)數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為(

A.23B.21C.35D.32

【答案】B

【解析】

根據(jù)隨機(jī)數(shù)表法的抽樣方法,確定選出來的第5個個體的編號.

隨機(jī)數(shù)表第1行的第4列和第5列數(shù)字為46,所以從這兩個數(shù)字開始,由左向右依次選取兩個數(shù)字如下46,64,42,16,60,6580,5626,1655,43,5024,2354,8963,21其中落在編號01,02,,3940內(nèi)的有:16,2616,2423,21,依次不重復(fù)的第5個編號為21.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線圍成的各區(qū)域上分別且只能標(biāo)記數(shù)字1,2,34,相鄰區(qū)域標(biāo)記的數(shù)字不同,其中,區(qū)域和區(qū)域標(biāo)記的數(shù)字丟失.若在圖上隨機(jī)取一點,則該點恰好取自標(biāo)記為1的區(qū)域的概率所有可能值中,最大的是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.回歸直線至少經(jīng)過其樣本數(shù)據(jù)中的一個點

B.從獨立性檢驗可知有99%的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時,我們就說如果某人吃地溝油,那么他有99%可能患胃腸癌

C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D.將一組數(shù)據(jù)的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,其方差也要加上或減去這個常數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

當(dāng)時,取得極值,求的值并判斷是極大值點還是極小值點;

當(dāng)函數(shù)有兩個極值點,,且時,總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)f(x)的極值點的個數(shù);

2)若f(x)有兩個極值點證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過點的直線交于兩點,與交于,兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為F1F2,過點F1的直線與C交于AB兩點.ABF2的周長為,且橢圓的離心率為.

1)求橢圓C的標(biāo)準(zhǔn)方程:

2)設(shè)點P為橢圓C的下頂點,直線PA,PBy2分別交于點MN,當(dāng)|MN|最小時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體的棱長為2平面.平面截此正方體所得的截面有以下四個結(jié)論:

①截面形狀可能是正三角形②截面的形狀可能是正方形

③截面形狀可能是正五邊形④截面面積最大值為

則正確結(jié)論的編號是(

A.①④B.①③C.②③D.②④

查看答案和解析>>

同步練習(xí)冊答案