Processing math: 73%
11.如圖,已知點(diǎn)F1,F(xiàn)2是橢圓C1x24+y22=1的左、右焦點(diǎn),點(diǎn)P是橢圓C2x22+y2=1上異于其長(zhǎng)軸端點(diǎn)的任意動(dòng)點(diǎn),直線PF1,PF2與橢圓C1的交點(diǎn)分別是A,B和M,N,記直線AB,MN的斜率分別為k1,k2
(1)求證:k1•k2為定值;
(2)求|AB|•|MN|得取值范圍.

分析 (1)設(shè)P(x0,y0),則x202+y20=1.利用斜率計(jì)算公式與橢圓的標(biāo)準(zhǔn)方程可得k1•k2為定植.
(2)設(shè)AB:y=k1(x+2),A(x1,y1),B(x2,y2),與橢圓方程聯(lián)立化為:2k21+1x2+42k21x+4k21-4=0,△>0,|AB|=a+ex1+a+ex2=4k21+12k21+1.同理可得:|MN|=4k22+12k22+1.即可得出|AB|•|MN|取值范圍.

解答 (1)證明:由題意可得:F12,0),F(xiàn)22,0),設(shè)P(x0,y0),則x202+y20=1.
∴k1•k2=y0x0+2y0x02=y20x202=12×2x20x202=-12為定植.
(2)解:設(shè)AB:y=k1(x+2),A(x1,y1),B(x2,y2),聯(lián)立{y=k1x+2x2+2y2=4
化為:2k21+1x2+42k21x+4k21-4=0,△>0,可得k1∈R,x1+x2=42k212k21+1,
x1•x2=|AB|=a+ex1+a+ex2=4-22×42k212k21+1=4k21+12k21+1.同理可得:|MN|=4k22+12k22+1
∴|AB|•|MN|=4k21+12k21+1×4k22+12k22+1=8+21+k21+k22
令u=1+k21+k22=1+k21+14k21≥1+2k21×14k21=2,當(dāng)且僅當(dāng)k21=12時(shí)取等號(hào).
∴∴|AB|•|MN|=8+2u∈(8,9].

點(diǎn)評(píng) 本題考查了橢圓的第二定義標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題、一元二次方程的根與系數(shù)的關(guān)系、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.集合A={x|x2-2x>0},B={y|y=2x,x>0},R是實(shí)數(shù)集,則(∁RA)∪B等于(  )
A.[1,2]B.(1,+∞)C.(1,2]D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2acos2x+bsinxcosx,f(0)=2,f(\frac{π}{3})=\frac{{1+\sqrt{3}}}{2}
(1)求f(x)的最大值和最小值;
(2)求f(x)的單調(diào)遞增區(qū)間
(3)對(duì)于角α,β,若有α-β≠kπ,k∈Z,且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)的定義域?yàn)閇0,8],則函數(shù)\frac{f(2x)}{x-4}的定義域?yàn)椋ā 。?table class="qanwser">A.[0,4]B.[0,4)C.(0,4)D.[0,4)∪(4,16]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若3x=a,5x=b,則45x等于( �。�
A.a2bB.ab2C.a2+bD.a2+b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)=sinx(cosx+1),則f′(\frac{π}{4}\frac{\sqrt{2}}{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知tanα=3,α∈(0,π),則cos({\frac{5π}{2}+2α)=( �。�
A.\frac{3}{5}B.\frac{4}{5}C.-\frac{3}{5}D.-\frac{4}{5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.《九章算數(shù)》是我國(guó)古代數(shù)學(xué)名著,在其中有道“竹九問題”“今有竹九節(jié),下三節(jié)容量四升,上四節(jié)容量三升.問中間二節(jié)欲均容各多少?”意思為:今有竹九節(jié),下三節(jié)容量和為4升,上四節(jié)容量之和為3升,且每一節(jié)容量變化均勻(即每節(jié)容量成等差數(shù)列),問每節(jié)容量各為多少?在這個(gè)問題中,中間一節(jié)的容量為( �。�
A.\frac{7}{2}B.\frac{37}{33}C.\frac{10}{11}D.\frac{67}{66}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求二項(xiàng)式({\sqrt{x}$+$\frac{2}{x^2}}8的展開式中:求:
(1)二項(xiàng)式系數(shù)最大的項(xiàng);
(2)系數(shù)最大的項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案