若(1-ax)5展開式中各項(xiàng)系數(shù)和為32,其中a∈R,該展開式中含x2項(xiàng)的系數(shù)為
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:根據(jù)展開式中各項(xiàng)系數(shù)和為32求得a=-1,再利用通項(xiàng)公式求得展開式中含x2項(xiàng)的系數(shù).
解答: 解:在(1-ax)5展開式中,令x=1,可得各項(xiàng)系數(shù)和為(1-a)5 =32,
∴a=-1,故(1-ax)5 =(1+x)5展開式中含x2項(xiàng)的系數(shù)為
C
2
5
=10,
故答案為:10.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,是給變量賦值的問題,二項(xiàng)式展開式的通項(xiàng)公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

各項(xiàng)均不為零的數(shù)列{an}的前n項(xiàng)和為Sn,且an+3SnSn-1=0(n≥2),a1=
1
3

(1)求數(shù)列{an}的通項(xiàng)公式an
(2)若bn=
1 ,(n=1)
1
3(1-n)an
,(n≥2)
,設(shè)Tn=
1
b1+n
+
1
b2+n
+…+
1
bn+n
,若Tn>m對(duì)n≥2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且f(x)=2xf′(1)+lnx,則f′(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),其中x∈R,f(1)=2,且f(x)在R上的導(dǎo)數(shù)滿足f′(x)<1,則不等式f(x2)<x2+1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD的兩條對(duì)角線交于點(diǎn)E,設(shè)
AB
=
e1
,
AD
=
e2
,用
e1
e2
表示
ED
的表達(dá)式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)如圖,正六邊形ABCDEF中,點(diǎn)O為其中心,以這七個(gè)點(diǎn)為起點(diǎn)與終點(diǎn)的向量中,與向量
AB
平行的向量有
 
個(gè)(含
AB
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x
2
-sinx 的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0≤φ<π)的部分圖象如圖所示,則A=
 
,ω=
 
,φ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=-
1
2
x2+bln(x+2)在(-1,+∞)上是減函數(shù),則b的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案