在區(qū)間[1,5]和[2,4]分別取一個(gè)數(shù),記為a,b,則方程
x2
a2
+
y2
b2
=1
表示焦點(diǎn)在x軸上且離心率小于
3
2
的橢圓的概率為
 
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:表示焦點(diǎn)在x軸上且離心率小于
3
2
的橢圓時(shí),(a,b)點(diǎn)對(duì)應(yīng)的平面圖形的面積大小和區(qū)間[1,5]和[2,4]分別各取一個(gè)數(shù)(a,b)點(diǎn)對(duì)應(yīng)的平面圖形的面積大小,并將他們一起代入幾何概型計(jì)算公式進(jìn)行求解.
解答: 解:∵方程
x2
a2
+
y2
b2
=1
表示焦點(diǎn)在x軸上且離心率小于
3
2
的橢圓,
∴a>b>0,a<2b,
它對(duì)應(yīng)的平面區(qū)域如圖中陰影部分所示:
則方程
x2
a2
+
y2
b2
=1
表示焦點(diǎn)在x軸上且離心率小于
3
2
的概率為
P=
S陰影
S矩形
=1-
1
2
×1×
1
2
+
1
2
×(1+3)×2
2×4
=
15
32
,
故答案為:
15
32
點(diǎn)評(píng):幾何概型的概率估算公式中的“幾何度量”,可以為線段長(zhǎng)度、面積、體積等,而且這個(gè)“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a>0),滿足a+b+c<0,則方程f(x)=0的兩根x1,x2一定滿足( 。
A、x1<1且x2<1
B、x1>1且x2>1
C、x1,x2中一個(gè)大于1,另一個(gè)小于1
D、x1+x2<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面xoy中,不等式x2+y2≤4確定的平面區(qū)域?yàn)閁,不等式組
x-y≥0
x+y≥0
確定的平面區(qū)域?yàn)閂.
(Ⅰ)定義橫、縱坐標(biāo)為整數(shù)的點(diǎn)為“整點(diǎn)”,在區(qū)域U中任取3個(gè)“整點(diǎn)”,求這些“整點(diǎn)”恰好有兩個(gè)“整點(diǎn)”落在區(qū)域V中的概率;
(Ⅱ)在區(qū)域U中每次任取一個(gè)點(diǎn),若所取的點(diǎn)落在區(qū)域V中,稱試驗(yàn)成功,否則稱試驗(yàn)失。F(xiàn)進(jìn)行取點(diǎn)試驗(yàn),到成功了4次為止,求在此之前共有三次失敗,且恰有兩次連續(xù)失敗的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長(zhǎng)為2的正方形ABCD內(nèi)隨機(jī)取一點(diǎn)M,則AM<1的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
(1)命題“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
(2)關(guān)于x的不等式a<sin2x+
2
sin2x
恒成立,則a的取值范圍是a<3;
(3)對(duì)于函數(shù)f(x)=
ax
1+|x|
(a∈R且a≠0)
,則有當(dāng)a=1時(shí),?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個(gè)零點(diǎn);
(4)已知m,n,s,t∈R+,m+2n=5,
m
s
+
n
t
=9,n>m
,且m,n是常數(shù),又s+2t的最小值是1,則m+3n=7.
其中正確的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是正方體的平面展開圖,在這個(gè)正方體中,以下四個(gè)命題:
(1)BM與ED平行;
(2)CN與BE是異面直線;
(3)CN與BM成60°;
(4)CN與AF垂直.
其中正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)a、b、c、d滿足(b+a2-3lna)2+(c-d+2)2=0,則(a-c)2+(b-d)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三個(gè)正數(shù)a,b,c,滿足b<a+c≤2b,a<b+c≤2a,則
a
b
的取值范圍是( 。
A、(
2
3
,
3
2
B、(
1
3
,
2
3
C、(0,
3
2
D、(
2
3
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:x2-
y2
2
=1
,過點(diǎn)P(-1,-2)的直線交C于A,B兩點(diǎn),且點(diǎn)P為線段AB的中點(diǎn).
(1)求直線AB的方程;
(2)求弦長(zhǎng)|AB|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案