【題目】已知函數(shù).

1)討論函數(shù)的極值;

2)若,求函數(shù)在區(qū)間上的最值.

【答案】1)當(dāng)時(shí),極大值,不存在極小值;當(dāng)時(shí),極小值,不存在極大值;

2)當(dāng)時(shí),最大值為,最小值為;

當(dāng)時(shí),最大值為,最小值為;

當(dāng)時(shí),最大值為,最小值為;

當(dāng)時(shí),最大值為,最小值為;

當(dāng)時(shí),最大值為,最小值為.

【解析】

1)對函數(shù)求導(dǎo),利用導(dǎo)數(shù)分類研究函數(shù)的單調(diào)性,進(jìn)而得到極值.

2)對a分類討論,分別研究極值點(diǎn)與區(qū)間端點(diǎn)的關(guān)系,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性極值與最值,即可得出結(jié)論.

1)因?yàn)?/span>,

所以,

討論:

當(dāng)時(shí),令,得,令,得,

所以當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

所以當(dāng)時(shí),函數(shù)存在極大值,不存在極小值

當(dāng)時(shí),令,得,令,得

所以當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

所以當(dāng)時(shí),函數(shù)存在極小值,不存在極大值.

2)據(jù)(1)求解知,當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

討論:

當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞減,

所以函數(shù)在區(qū)間上的最大值,最小值;

當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞增,

所以函數(shù)在區(qū)間上的最大值,最小值;

當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

所以函數(shù)在區(qū)間上的最小值,最大值為的較大者.

下面比較的大。

,得,化簡得,

所以.

所以,

所以當(dāng)時(shí),,函數(shù)在區(qū)間上的最大值;

所以當(dāng)時(shí),,函數(shù)在區(qū)間上的最大值;

所以當(dāng)時(shí),,函數(shù)在區(qū)間上的最大值;

綜上,當(dāng)時(shí),函數(shù)在區(qū)間上的最大值為,最小值為;

當(dāng)時(shí),函數(shù)在區(qū)間上的最大值為,最小值為

當(dāng)時(shí),函數(shù)在區(qū)間上的最大值為,最小值為

當(dāng)時(shí),函數(shù)在區(qū)間上的最大值為,最小值為;

當(dāng)時(shí),函數(shù)在區(qū)間上的最大值為,最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高鐵、網(wǎng)購、移動(dòng)支付和共享單車被譽(yù)為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強(qiáng)勁活力.某移動(dòng)支付公司從我市移動(dòng)支付用戶中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):

每周移動(dòng)支付次數(shù)

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合計(jì)

15

12

13

7

8

45

(Ⅰ)把每周使用移動(dòng)支付超過3次的用戶稱為“移動(dòng)支付活躍用戶”,能否在犯錯(cuò)誤概率不超過0.005的前提下,認(rèn)為是否為“移動(dòng)支付活躍用戶”與性別有關(guān)?

(Ⅱ)把每周使用移動(dòng)支付6次及6次以上的用戶稱為“移動(dòng)支付達(dá)人”,視頻率為概率,在我市所有“移動(dòng)支付達(dá)人”中,隨機(jī)抽取4名用戶.

①求抽取的4名用戶中,既有男“移動(dòng)支付達(dá)人”又有女“移動(dòng)支付達(dá)人”的概率;

②為了鼓勵(lì)男性用戶使用移動(dòng)支付,對抽出的男“移動(dòng)支付達(dá)人”每人獎(jiǎng)勵(lì)300元,記獎(jiǎng)勵(lì)總金額為,求的分布列及數(shù)學(xué)期望.

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知點(diǎn)A是拋物線的對稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)B為拋物線的焦點(diǎn),P在拋物線上且滿足,當(dāng)取最大值時(shí),點(diǎn)P恰好在以A、B為焦點(diǎn)的雙曲線上,則雙曲線的離心率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)求函數(shù)的單調(diào)區(qū)間;

2)若對任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),下述四個(gè)結(jié)論:

是偶函數(shù);

的最小正周期為;

的最小值為0

上有3個(gè)零點(diǎn)

其中所有正確結(jié)論的編號(hào)是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)若曲線與曲線在它們的公共點(diǎn)處且有公共切線,求的值;

2)若存在實(shí)數(shù)使不等式的解集為,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,,底面為菱形,且有,,中點(diǎn).

(1)證明:;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C=2px經(jīng)過點(diǎn)(1,2).過點(diǎn)Q(0,1)的直線l與拋物線C有兩個(gè)不同的交點(diǎn)A,B且直線PAy軸于M,直線PBy軸于N

求直線l的斜率的取值范圍;

設(shè)O為原點(diǎn),,求證為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是邊長為3的正方形,平面,,且,.

(1)求幾何體的體積;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案