分析 本題符合幾何概型,只要分別求出已知區(qū)間長度以及滿足不等式的區(qū)間長度,再由根與系數(shù)的關(guān)系得到關(guān)于m的方程解之
解答 解:在區(qū)間[-2,4]上隨機(jī)取一個數(shù)x對應(yīng)的區(qū)間長度為6,
而使f(x)<0的概率為23,即x2-2x+m<0的概率為23,
得到使x2-2x+m<0成立的x的區(qū)間長度為4,即|x1-x2|=4,
所以(x1+x2)2-4x1x2=16,
所以4-4m=16,解得m=-3;
故答案為:-3.
點評 本題考查幾何概型,解題的關(guān)鍵是:解不等式,確定其測度,利用概率的求法以及根與系數(shù)的關(guān)系得到關(guān)于m 的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,0)∪(1,+∞) | B. | (-∞,0)∪(1,2) | C. | (-∞,-2)∪(0,1) | D. | (-∞,1)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 14 | B. | 19 | C. | 136 | D. | 2536 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | T=2π,ymax=2√3 | B. | T=π,ymax=2√3 | C. | T=π,ymax=3 | D. | T=π,ymax=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com