分析 由圖象易知T,由三角函數(shù)周期公式可求得ω,再由點($\frac{5π}{12}$,1)在函數(shù)圖象上,結合φ范圍可求φ,求得函數(shù)f(x)的解析式,即可求值得解.
解答 解:∵由函數(shù)圖象可得:$\frac{1}{2}$T=$\frac{11π}{12}$-$\frac{5π}{12}$,
∴T=π,又T=$\frac{2π}{ω}$,ω>0,
∴ω=2;
∵點($\frac{5π}{12}$,1)在函數(shù)圖象上,可得:2•$\frac{5π}{12}$+φ=$\frac{π}{2}$+2kπ,k∈Z,
∴解得:φ=2kπ-$\frac{π}{3}$.k∈Z,
∵-$\frac{π}{2}$<φ<$\frac{π}{2}$,
∴φ=-$\frac{π}{3}$,
∴f(0)=sin(2×0-$\frac{π}{3}$)=-sin$\frac{π}{3}$=-$\frac{\sqrt{3}}{2}$.
故答案為:-$\frac{\sqrt{3}}{2}$.
點評 本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,其中求φ是解題的關鍵,考察數(shù)形結合思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x=3或3x+4y-29=0 | B. | y=3或3x+4y-29=0 | C. | x=3或3x-4y+11=0 | D. | y=3或3x-4y+11=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,2} | B. | {3,4} | C. | {5} | D. | {1,2,5} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2e,0) | B. | (-2e,0] | C. | [-2e,6e-3] | D. | (-2e,6e-3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>c>b | B. | b>c>a | C. | b>a>c | D. | c>a>b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com