已知函數(shù)f(x)=x2+a(x+lnx),x>0,a∈R是常數(shù).
(1)?a∈R,試證明函數(shù)y=f(x)的圖象在點(1,f(1))處的切線經(jīng)過定點;
(2)若函數(shù)y=f(x)圖象上的點都在第一象限,試求常數(shù)a的取值范圍.
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求導(dǎo)函數(shù),可得切線斜率,求出切點坐標(biāo),可得函數(shù)y=f(x)的圖象在點(1,f(1))處的切線,即可得出切線y=(1+a)(2x-1)經(jīng)過定點(
1
2
,0)
;
(2)分類討論,a<0時,由f(x)=x2+a(x+lnx)>0得
1
a
<-(
1
x
+
1
x2
lnx)
,求出右邊對應(yīng)函數(shù)的最值,即可求常數(shù)a的取值范圍.
解答: (1)證明:f′(x)=2x+a(1+
1
x
)
…(1分)
∴f(1)=1+a,f′(1)=2+2a…(2分),
∴函數(shù)y=f(x)的圖象在點(1,f(1))處的切線為y-(1+a)=(2+2a)(x-1),
即y=(1+a)(2x-1)…(4分)
?a∈R,當(dāng)x=
1
2
時,y=(1+a)(2x-1)=0,即切線y=(1+a)(2x-1)經(jīng)過定點(
1
2
,0)
…(5分)
(2)解:a=0時,f(x)=x2,
∵x>0,∴點(x,x2)在第一象限…(6分)
依題意,f(x)=x2+a(x+lnx)>0…(7分)
a>0時,由對數(shù)函數(shù)性質(zhì)知,x∈(0,1)時,lnx∈(-∞,0),alnx∈(-∞,0),
從而“?x>0,f(x)=x2+a(x+lnx)>0”不成立…(8分)
a<0時,由f(x)=x2+a(x+lnx)>0得
1
a
<-(
1
x
+
1
x2
lnx)
…(9分)
設(shè)g(x)=-(
1
x
+
1
x2
lnx)
,g(x)=
x-1
x3
+
2
x3
lnx
…(10分)
x (0,1) 1 (1,+∞)
g′(x) - 0 +
g(x) 極小值
g(x)≥g(1)=-1,從而
1
a
<-(
1
x
+
1
x2
lnx)<-1
,-1<a<0…(13分)
綜上所述,常數(shù)a的取值范圍-1<a≤0…(14分).
點評:本題考查導(dǎo)數(shù)知識的運用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的最值,考查分類討論的數(shù)學(xué)思想,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐的體積為V,過棱錐的高的三等分點的兩個平行于底面的截面將棱錐分成三部分的體積比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x5+x4+x3+x2+x+1,用秦九昭算法計算f(3)的值時,首先計算的最內(nèi)層括號內(nèi)一次多項式v1的值是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓 
x2
9
+
y2
m2
=1
,(0<m<3)的左右焦點分別為F1、F2,過F2的直線與橢圓交于A、B兩點,點B關(guān)于y軸的對稱點為點C,則四邊形AF1CF2的周長為( 。
A、2m
B、4m
C、4
9-m2
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
px+2
x2+1
(其中p為常數(shù),x∈[-2,2]),若對任意的x,都有f(x)=f(-x)
(1)求p的值;
(2)用定義證明函數(shù)f(x)在(0,2)上是單調(diào)減函數(shù);
(3)若p=1,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以原點為中心,以坐標(biāo)軸為對稱軸的橢圓C的一個焦點為(0,
3
)
,且過點(0,2).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線y=kx+1與橢圓C交于A,B兩點,k為何值時
OA
OB
?此時|
AB
|
的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點F1、F2為雙曲線C:x2-
y2
b2
=1的左、右焦點,過F2作垂直于x軸的直線,在x軸上方交雙曲線C于點M,∠MF1F2=30°.
(1)求雙曲線C的方程;
(2)過雙曲線C上任意一點P作該雙曲線兩條漸近線的垂線,垂足分別為P1、P2,求
PP1
PP2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+1,g(x)=x2+
b
x
-1,(a,b∈R).
(1)若曲線y=g(x)在點(1,g(1))處的切線平行于x軸,求b的值;
(2)當(dāng)a>0時,若對?x∈R(1,e),f(x)>x恒成立,求實數(shù)a的取值范圍;
(3)設(shè)p(x)=f(x)+g(x),在(1)的條件下,證明當(dāng)a≤0時,對任意兩個不相等的正數(shù)x1,x2,有
p(x1)+p(x2)
2
>p(
x1+x2
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時,f(x)=
2|x-1|-1,0<x≤2
1
2
f(x-2),x>2
則關(guān)于x的方程6[f(x)]2-f(x)-1=0的實數(shù)根個數(shù)為( 。
A、6B、7C、8D、9

查看答案和解析>>

同步練習(xí)冊答案