【題目】設(shè)正整數(shù)數(shù)列滿足.

(1)若,請寫出所有可能的的取值;

(2)求證:中一定有一項(xiàng)的值為13

(3)若正整數(shù)m滿足當(dāng)時(shí),中存在一項(xiàng)值為1,則稱m為“歸一數(shù)”,是否存在正整數(shù)m,使得m都不是“歸一數(shù)”?若存在,請求出m的最小值;若不存在,請說明理由.

【答案】1可能取得值為:,,,(2)證明見解析,(3)不存在。

【解析】

1)利用數(shù)列的遞推關(guān)系,分類討論,即可得出可能取得的值.

2)首先設(shè)中最小的奇數(shù)為,根據(jù)題意得到:,再對分奇數(shù)和偶數(shù)討論即可.

3)由題知:中一定有,設(shè),得到,…….均為的倍數(shù).故不存在正整數(shù)m,使得m都不是“歸一數(shù)”.

1)由題知:數(shù)列各項(xiàng)均為正整數(shù),

,解得:(舍去).

,解得:(舍去).

,解得:.

當(dāng)時(shí),,解得:.

當(dāng)時(shí),,解得:(舍去).

可能取得值為:,.

2)因?yàn)?/span>為正整數(shù)數(shù)列,設(shè)中最小的奇數(shù)為

所以為偶數(shù).

所以,此時(shí)可能為奇數(shù)或偶數(shù).

當(dāng)為奇數(shù)時(shí),則,解得:.

所以.

當(dāng)為偶數(shù)時(shí),則,解得:.

所以.

綜上所述:中一定有一項(xiàng)的值為.

3)由(2)知:中一定有,由題知:

因?yàn)?/span>

所以.

設(shè),則,…….均為的倍數(shù).

故不存在正整數(shù)m,使得m都不是“歸一數(shù)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)

已知函數(shù)(其中a是實(shí)數(shù)).

(1)求的單調(diào)區(qū)間;

(2)若設(shè),且有兩個(gè)極值點(diǎn) ,求取值范圍.(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)fx)的單調(diào)遞增區(qū)間;

2)將函數(shù)fx)的圖象向右平移個(gè)單位,再將所得圖象的橫坐標(biāo)縮短到原來的一半,縱坐標(biāo)不變,得到新的函數(shù)ygx),當(dāng)時(shí),求gx)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P在直線l:y=x-1,若存在過點(diǎn)P的直線交拋物線A,B兩點(diǎn),|PA|=|AB|,則稱點(diǎn)P為“正點(diǎn)”,那么下列結(jié)論中正確的是( )

A.直線l上的所有點(diǎn)都是“正點(diǎn)”

B.直線l上僅有有限個(gè)點(diǎn)是“正點(diǎn)”

C.直線l上的所有點(diǎn)都不是“正點(diǎn)”

D.直線l上有無窮多個(gè)點(diǎn)(但不是所有的點(diǎn))是“正點(diǎn)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、是橢圓和雙曲線的公共焦點(diǎn),是他們的一個(gè)公共點(diǎn),且,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)R).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若對任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(Ⅰ)寫出曲線C的直角坐標(biāo)方程;

(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),且AB的長度為2,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問某地100名高中學(xué)生在選擇座位時(shí)是否挑同桌,得到如下列聯(lián)表:

男生

女生

合計(jì)

挑同桌

30

40

70

不挑同桌

20

10

30

總計(jì)

50

50

100

1)從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個(gè)容量為5的樣本,現(xiàn)從這5名學(xué)生中隨機(jī)選取3名做深度采訪,求這3名學(xué)生中恰有2名挑同桌的概率;

2)根據(jù)以上列聯(lián)表,是否有以上的把握認(rèn)為性別與在選擇座位時(shí)是否挑同桌有關(guān)?

下面的臨界值表供參考:

0.050

0.010

0.001

3.841

6.635

10.828

(參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費(fèi)用也不斷增加.下表是某購物網(wǎng)站20181月~8月促銷費(fèi)用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).

月份

1

2

3

4

5

6

7

8

促銷費(fèi)用

2

3

6

10

13

21

15

18

產(chǎn)品銷量

1

1

2

3

3.5

5

4

4.5

1)根據(jù)數(shù)據(jù)可知具有線性相關(guān)關(guān)系,請建立的回歸方程(系數(shù)精確到0.01);

2)已知6月份該購物網(wǎng)站為慶祝成立1周年,特制定獎(jiǎng)勵(lì)制度:以(單位:件)表示日銷量,,則每位員工每日獎(jiǎng)勵(lì)100元;,則每位員工每日獎(jiǎng)勵(lì)150元,,則每位員工每日獎(jiǎng)勵(lì)200.現(xiàn)已知該網(wǎng)站6月份日銷量服從正態(tài)分布,請你計(jì)算某位員工當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)大約多少元(當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)精確到百分位).

參考數(shù)據(jù):,,其中,分別為第個(gè)月的促銷費(fèi)用和產(chǎn)品銷量,.

參考公式:①對于一組數(shù)據(jù),,其回歸方程的斜率和截距的最小二乘估計(jì)分別為,;②若隨機(jī)變量服從正態(tài)分布,則,.

查看答案和解析>>

同步練習(xí)冊答案