【題目】已知數(shù)列滿(mǎn)足:

1)求:

2)猜想數(shù)列的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;

3)若對(duì)于恒成立,求實(shí)數(shù)的取值范圍

【答案】1;(2,證明見(jiàn)詳解;(3

【解析】

1)通過(guò)賦值,結(jié)合已知條件,即可求得;

2)根據(jù)數(shù)列的規(guī)律,進(jìn)行歸納總結(jié),再遵循數(shù)學(xué)歸納法的證明過(guò)程即可證明;

3)先求,將問(wèn)題轉(zhuǎn)換為恒成立問(wèn)題,再求最值即可.

1

因?yàn)?/span>,故

2)由(1)猜想

①當(dāng)時(shí),,顯然成立

假設(shè)當(dāng)時(shí)成立,即

則當(dāng)時(shí),

即證當(dāng)時(shí)候,猜想成立;

綜上所述:對(duì)任意正整數(shù)都成立.

3)因?yàn)?/span>,故:

對(duì)于恒成立,則只需滿(mǎn)足恒成立即可

當(dāng)時(shí),恒成立滿(mǎn)足題意;

當(dāng)時(shí),顯然不可能成立;

當(dāng)時(shí),對(duì)稱(chēng)軸

單調(diào)遞減,

解得,又,

故當(dāng)時(shí),滿(mǎn)足題意.

綜上所述,時(shí),對(duì)于恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)過(guò)點(diǎn)是拋物線(xiàn)上異于點(diǎn)的不同兩點(diǎn),且以線(xiàn)段為直徑的圓恒過(guò)點(diǎn).

(I)當(dāng)點(diǎn)與坐標(biāo)原點(diǎn)重合時(shí),求直線(xiàn)的方程;

(II)求證:直線(xiàn)恒過(guò)定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生社團(tuán)組織活動(dòng)豐富,學(xué)生會(huì)為了解同學(xué)對(duì)社團(tuán)活動(dòng)的滿(mǎn)意程度,隨機(jī)選取了100位同學(xué)進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿(mǎn)意度評(píng)分值(百分制)按照[40,50),[50,60),[60,70),,[90,100]分成6組,制成如圖所示頻率分布直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的中位數(shù);

3)現(xiàn)從被調(diào)查的問(wèn)卷滿(mǎn)意度評(píng)分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進(jìn)行座談了解,再?gòu)倪@5人中隨機(jī)抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn),為直線(xiàn)上的動(dòng)點(diǎn),過(guò)的垂線(xiàn),該垂線(xiàn)與線(xiàn)段的垂直平分線(xiàn)交于點(diǎn),記的軌跡為.

(1)求的方程;

(2)若過(guò)的直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),直線(xiàn)與直線(xiàn)分別交于,兩點(diǎn),試判斷以為直徑的圓是否經(jīng)過(guò)定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)的圖像與軸相切,求證:對(duì)于任意互不相等的正實(shí)數(shù),,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱(chēng)為該橢圓的特征三角形;如果兩個(gè)橢圓的特征三角形是相似的,則稱(chēng)這兩個(gè)橢圓是相似橢圓,并將三角形的相似比稱(chēng)為橢圓的相似比,已知橢圓.

1)若橢圓,判斷相似?如果相似,求出的相似比;如果不相似,請(qǐng)說(shuō)明理由;

2)寫(xiě)出與橢圓相似且焦點(diǎn)在軸上,短半軸長(zhǎng)為的橢圓的標(biāo)準(zhǔn)方程;若在橢圓上存在兩點(diǎn)、關(guān)于直線(xiàn)對(duì)稱(chēng),求實(shí)數(shù)的取值范圍;

3)如圖:直線(xiàn)與兩個(gè)相似橢圓分別交于點(diǎn)和點(diǎn),試在橢圓和橢圓上分別作出點(diǎn)和點(diǎn)(非橢圓頂點(diǎn)),使組成以為相似比的兩個(gè)相似三角形,寫(xiě)出具體作法.(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ,則的最小值為__________; 有最小值,則實(shí)數(shù)的取值范圍是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩陣乘法運(yùn)算的幾何意義為平面上的點(diǎn)在矩陣的作用下變換成點(diǎn),記,且.

1)若平面上的點(diǎn)在矩陣的作用下變換成點(diǎn),求點(diǎn)的坐標(biāo);

2)若平面上相異的兩點(diǎn)、在矩陣的作用下,分別變換為點(diǎn)、,求證:若點(diǎn)為線(xiàn)段上的點(diǎn),則點(diǎn)的作用下的點(diǎn)在線(xiàn)段上;

3)已知的頂點(diǎn)坐標(biāo)為、,且在矩陣作用下變換成,記的面積分別為,求的值,并寫(xiě)出一般情況(三角形形狀一般化且變換矩陣一般化)下的關(guān)系(不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,,且,.

1)證明:平面平面;

2)若點(diǎn)的中點(diǎn),求二面角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案