【題目】袋中共有8個(gè)球,其中有3個(gè)白球,5個(gè)黑球,這些球除顏色外完全相同.從袋中隨機(jī)取出一球,如果取出白球,則把它放回袋中;如果取出黑球,則該黑球不再放回,并且另補(bǔ)一個(gè)白球放入袋中.重復(fù)上述過程次后,袋中白球的個(gè)數(shù)記為

1)求隨機(jī)變量的概率分布及數(shù)學(xué)期望;

2)求隨機(jī)變量的數(shù)學(xué)期望關(guān)于的表達(dá)式.

【答案】1)概率分布詳見解析,;(2

【解析】

1的可能取值為3,4,5,計(jì)算概率得到分布列,計(jì)算數(shù)學(xué)期望得到答案.

2)設(shè),則,計(jì)算概率得到數(shù)學(xué)期望,整理化簡(jiǎn)得到,根據(jù)數(shù)列知識(shí)得到答案.

1)由題意可知3,45

當(dāng)時(shí),即二次摸球均摸到白球,其概率是;

當(dāng)時(shí),即二次摸球恰好摸到一白,一黑球,

其概率是

當(dāng)時(shí),即二次摸球均摸到黑球,其概率是

所以隨機(jī)變量的概率分布如下表:

數(shù)學(xué)期望.

2)設(shè),0,1,2,34,5

,

,,

,,

,

由此可知,,

,故是首項(xiàng)為,公比為的等比數(shù)列,

,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題實(shí)數(shù)滿足(其中),命題方程表示雙曲線.

I)若,且為真命題,求實(shí)數(shù)的取值范圍;

(Ⅱ)的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某游戲廠商對(duì)新出品的一款游戲設(shè)定了“防沉迷系統(tǒng)”,規(guī)則如下:

①3小時(shí)以內(nèi)(3小時(shí))為健康時(shí)間,玩家在這段時(shí)間內(nèi)獲得的累積經(jīng)驗(yàn)值單位:與游玩時(shí)間小時(shí))滿足關(guān)系式:;

②35小時(shí)(5小時(shí))為疲勞時(shí)間,玩家在這段時(shí)間內(nèi)獲得的經(jīng)驗(yàn)值為即累積經(jīng)驗(yàn)值不變);

超過5小時(shí)為不健康時(shí)間,累積經(jīng)驗(yàn)值開始損失,損失的經(jīng)驗(yàn)值與不健康時(shí)間成正比例關(guān)系,比例系數(shù)為50.

當(dāng)時(shí),寫出累積經(jīng)驗(yàn)值E與游玩時(shí)間t的函數(shù)關(guān)系式,并求出游玩6小時(shí)的累積經(jīng)驗(yàn)值;

該游戲廠商把累積經(jīng)驗(yàn)值E與游玩時(shí)間t的比值稱為“玩家愉悅指數(shù)”,記作;若,且該游戲廠商希望在健康時(shí)間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于24,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】物聯(lián)網(wǎng)興起、發(fā)展、完善極大的方便了市民生活需求.某市統(tǒng)計(jì)局隨機(jī)地調(diào)查了該市某社區(qū)的100名市民網(wǎng)上購(gòu)菜狀況,其數(shù)據(jù)如下:

每周網(wǎng)上買菜次數(shù)

1

2

3

4

5

6次及以上

總計(jì)

10

8

7

3

2

15

45

5

4

6

4

6

30

55

總計(jì)

15

12

13

7

8

45

100

1)把每周網(wǎng)上買菜次數(shù)超過3次的用戶稱為“網(wǎng)上買菜熱愛者”,能否在犯錯(cuò)誤概率不超過0.005的前提下,認(rèn)為是否為“網(wǎng)上買菜熱愛者”與性別有關(guān)?

2)把每周使用移動(dòng)支付6次及6次以上的用戶稱為“網(wǎng)上買菜達(dá)人”,視頻率為概率,在我市所有“網(wǎng)上買菜達(dá)人”中,隨機(jī)抽取4名用戶求既有男“網(wǎng)上買菜達(dá)人”又有女“網(wǎng)上買菜達(dá)人”的概率.

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.076

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體中,點(diǎn)是棱上的一個(gè)動(dòng)點(diǎn),平面交棱于點(diǎn)給出下列命題:

①存在點(diǎn),使得//平面

對(duì)于任意的點(diǎn),平面平面

存在點(diǎn),使得平面;

④對(duì)于任意的點(diǎn),四棱錐的體積均不變.

其中正確命題的序號(hào)是______.(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的三邊長(zhǎng)分別為a、b、c,且滿足.

(1)是否存在邊長(zhǎng)均為整數(shù)的ABC?若存在,求出三邊長(zhǎng);若不存在,說明理由.

(2),,求出ABC周長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一塊鐵皮零件,其形狀是由邊長(zhǎng)為的正方形截去一個(gè)三角形所得的五邊形,其中,如圖所示.現(xiàn)在需要用這塊材料截取矩形鐵皮,使得矩形相鄰兩邊分別落在上,另一頂點(diǎn)落在邊邊上.設(shè),矩形的面積為.

1)試求出矩形鐵皮的面積關(guān)于的函數(shù)解析式,并寫出定義域;

2)試問如何截。取何值時(shí)),可使得到的矩形的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解本市的交通狀況,某校高一年級(jí)的同學(xué)分成了甲、乙、丙三個(gè)組,從下午13點(diǎn)到18點(diǎn),分別對(duì)三個(gè)路口的機(jī)動(dòng)車通行情況進(jìn)行了實(shí)際調(diào)查,并繪制了頻率分布直方圖(如圖),記甲、乙、丙三個(gè)組所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為,則它們的大小關(guān)系為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案