【題目】給出下列結(jié)論: ①已知函數(shù)f(x)是定義在R上的奇函數(shù),若f(﹣1)=2,f(﹣3)=﹣1,則f(3)<f(﹣1);
②函數(shù)y=log (x2﹣2x)的單調(diào)遞增減區(qū)間是(﹣∞,0);
③已知函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2 , 則當(dāng)x<0時(shí),f(x)=﹣x2;
④若函數(shù)y=f(x)的圖象與函數(shù)y=ex的圖象關(guān)于直線y=x對(duì)稱,則對(duì)任意實(shí)數(shù)x,y都有f(xy)=f(x)+f(y).
則正確結(jié)論的序號(hào)是(請(qǐng)將所有正確結(jié)論的序號(hào)填在橫線上).
【答案】①③④
【解析】解:①已知函數(shù)f(x)是定義在R上的奇函數(shù),若f(﹣1)=2,f(﹣3)=﹣1,則f(3)=﹣f(﹣3)=1<f(﹣1),正確;②函數(shù)y=log (x2﹣2x)的單調(diào)遞增減區(qū)間是(1,+∞),不正確;③已知函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2,則當(dāng)x<0時(shí),f(x)=﹣f(﹣x)=﹣x2,正確;④若函數(shù)y=f(x)的圖象與函數(shù)y=ex的圖象關(guān)于直線y=x對(duì)稱,即f(x)=lnx,則對(duì)任意實(shí)數(shù)x,y都有f(xy)=f(x)+f(y),正確.
所以答案是①③④.
【考點(diǎn)精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊半徑為2的半圓形鋼板,計(jì)劃剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上.設(shè)∠DAB=θ(0<θ< ),L為等腰梯形ABCD的周長.
(1)求周長L與θ的函數(shù)解析式;
(2)試問周長L是否存在最大值?若存在,請(qǐng)求出最大值,并指出此時(shí)θ的大。蝗舨淮嬖,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在區(qū)間D上,如果函數(shù)f(x)為減函數(shù),而xf(x)為增函數(shù),則稱f(x)為D上的弱減函數(shù).若f(x)=
(1)判斷f(x)在區(qū)間[0,+∞)上是否為弱減函數(shù);
(2)當(dāng)x∈[1,3]時(shí),不等式 恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)g(x)=f(x)+k|x|﹣1在[0,3]上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,角C是鈍角,且sinB= .
(1)求角C的值;
(2)若b=2,△ABC的面積為 ,求c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點(diǎn)C(t, )(t∈R且t≠0)為圓心的圓經(jīng)過原點(diǎn)O,且與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)求證:△AOB的面積為定值.
(2)設(shè)直線2x+y﹣4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程.
(3)在(2)的條件下,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A.命題“若x≠2或y≠7,則x+y≠9”的逆命題為真命題
B.命題“若x2=4,則x=2”的否命題是“若x2=4,則x≠2”
C.命題“若x2<1,則﹣1<x<1”的逆否命題是“若x<﹣1或x>1,則x2>1”
D.若命題p:x∈R,x2﹣x+1>0,q:x0∈(0,+∞),sinx0>1,則(¬p)∨q為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系內(nèi),已知A(3,3)是⊙C上一點(diǎn),折疊該圓兩次使點(diǎn)A分別與圓上不相同的兩點(diǎn)(異于點(diǎn)A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,若⊙C上存在點(diǎn)P,使∠MPN=90°,其中M、N的坐標(biāo)分別為(﹣m,0)(m,0),則m的最大值為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤分別為P和Q(萬元),它們與投入資金m(萬元)的關(guān)系有經(jīng)驗(yàn)公式P= m+65,Q=76+4 ,今將150萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投資金額不低于25萬元.
(1)設(shè)對(duì)乙產(chǎn)品投入資金x萬元,求總利潤y(萬元)關(guān)于x的函數(shù)關(guān)系式及其定義域;
(2)如何分配使用資金,才能使所得總利潤最大?最大利潤為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com