【題目】設(shè)是定義域?yàn)?/span>的函數(shù)的導(dǎo)函數(shù),,,則的解集為( )
A. B.
C. D.
【答案】A
【解析】
構(gòu)造函數(shù)g(x)=f(x)﹣3x﹣7,由g(﹣1)=4+3﹣7=0,求導(dǎo)根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,則g(x)是R上的減函數(shù),由g(x)>g(﹣1),則x<﹣1.
令g(x)=f(x)﹣3x﹣7,則g(﹣1)=f(﹣1)+3﹣7,
因?yàn)?/span>f(﹣1)=4,所以g(﹣1)=4+3﹣7=0,
由f(x)>3x+7,即f(x)﹣3x﹣7>0,即g(x)>g(﹣1);
因?yàn)?/span>f'(x)<3,所以g'(x)=f'(x)﹣3<0,
所以,g(x)是R上的減函數(shù);
則由g(x)>g(﹣1),則x<﹣1;
所以,不等式f(x)>3x+7的解集為(﹣∞,﹣1)
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)P(2,4)作兩條互相垂直的直線l1,l2,若l1交x軸于A點(diǎn),l2交y軸于B點(diǎn),求線段AB的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=x3﹣3x在區(qū)間(a,6﹣a2)上有最小值,則實(shí)數(shù)a的取值范圍是______
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E過(guò)點(diǎn)A(2,3),對(duì)稱(chēng)軸為坐標(biāo)軸,焦點(diǎn)F1,F2在x軸上,離心率,∠F1AF2的平分線所在直線為l.
(1)求橢圓E的方程;
(2)設(shè)l與x軸的交點(diǎn)為Q,求點(diǎn)Q的坐標(biāo)及直線l的方程;
(3)在橢圓E上是否存在關(guān)于直線l對(duì)稱(chēng)的相異兩點(diǎn)?若存在,請(qǐng)找出;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ ,g(x)= ﹣1. (Ⅰ)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(Ⅱ)若f(x)在[1,e]上的最小值為 ,求a的值;
(Ⅲ)當(dāng)a=0時(shí),若x≥1時(shí),恒有xf(x)≤λ[g(x)+x]成立,求λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)滿(mǎn)足 ,當(dāng)x∈[0,1]時(shí),f(x)=x,若在區(qū)間(﹣1,1]上,方程f(x)﹣4ax﹣a=0有兩個(gè)不等的實(shí)根,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P在直線x+3y﹣2=0上,點(diǎn)Q在直線x+3y+6=0上,線段PQ的中點(diǎn)為M(x0 , y0),且y0<x0+2,則 的取值范圍是( )
A.[﹣ ,0)
B.(﹣ ,0)??
C.(﹣ ,+∞)
D.(﹣∞,﹣ )∪(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A是拋物線y2=4x上的一點(diǎn),以點(diǎn)A和點(diǎn)B(2,0)為直徑的圓C交直線x=1于M,N兩點(diǎn).直線l與AB平行,且直線l交拋物線于P,Q兩點(diǎn). (Ⅰ)求線段MN的長(zhǎng);
(Ⅱ)若 =﹣3,且直線PQ與圓C相交所得弦長(zhǎng)與|MN|相等,求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com