【題目】執(zhí)行如圖所示的程序框圖,若輸入的x的值為2,則輸出的n的值為(
A.4
B.5
C.6
D.7

【答案】B
【解析】解:模擬程序的運(yùn)行,可得 x=2,n=1
不滿足條件x>100,執(zhí)行循環(huán)體,x=6,n=2
不滿足條件x>100,執(zhí)行循環(huán)體,x=18,n=3
不滿足條件x>100,執(zhí)行循環(huán)體,x=54,n=4
不滿足條件x>100,執(zhí)行循環(huán)體,x=162,n=5
滿足條件x>100,退出循環(huán),輸出n的值為5.
故選:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求上的單調(diào)區(qū)間;

(2)當(dāng)時,求不等式的解集;

(3)當(dāng)時,設(shè)函數(shù),求證:不等式在定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,已知a1= ,an+1= an ,n∈N* , 設(shè)Sn為{an}的前n項(xiàng)和.
(1)求證:數(shù)列{3nan}是等差數(shù)列;
(2)求Sn;
(3)是否存在正整數(shù)p,q,r(p<q<r),使Sp , Sq , Sr成等差數(shù)列?若存在,求出p,q,r的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求直線yx被圓x2+(y-2)2=4截得的弦長;

(2)已知圓,求過點(diǎn)的圓的切線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):

(1)求回歸直線方程.

(2)預(yù)計在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入-成本)

參考數(shù)據(jù)如下:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義域?yàn)?/span>的函數(shù)的導(dǎo)函數(shù),,則的解集為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 (t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=4 sinθ. (Ⅰ)將C2的方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)C1 , C2交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為 ,求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱柱的底面ABCD為矩形,AB=1,AD=2,,則的長為( )

A. B.  C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(ω>0, )的部分圖象如圖所示,將函數(shù)f(x)的圖象向右平移 個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間 )上的值域?yàn)閇﹣1,2],則θ=

查看答案和解析>>

同步練習(xí)冊答案