【題目】如圖,在三棱錐A﹣BCD中,AB=AD,BD⊥CD,點(diǎn)E、F分別是棱BC、BD的中點(diǎn).
(1)求證:EF∥平面ACD;
(2)求證:AE⊥BD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為支援武漢抗擊疫情,某醫(yī)院準(zhǔn)備從6名醫(yī)生和3名護(hù)士中選出5人組成一個醫(yī)療小組遠(yuǎn)赴武漢,請解答下列問題:(用數(shù)字作答)
(1)如果這個醫(yī)療小組中醫(yī)生和護(hù)士都不能少于2人,共有多少種不同的建組方案?
(2)醫(yī)生甲要擔(dān)任醫(yī)療小組組長,所以必選,而且醫(yī)療小組必須醫(yī)生和護(hù)士都有,共有多少種不同的建組方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩隊參加聽歌猜歌名游戲,每隊人.隨機(jī)播放一首歌曲, 參賽者開始搶答,每人只有一次搶答機(jī)會,答對者為本隊贏得一分,答錯得零分, 假設(shè)甲隊中每人答對的概率均為,乙隊中人答對的概率分別為,且各人回答正確與否相互之間沒有影響.
(1)若比賽前隨機(jī)從兩隊的個選手中抽取兩名選手進(jìn)行示范,求抽到的兩名選手在同一個隊的概率;
(2)用表示甲隊的總得分,求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(3)求兩隊得分之和大于4的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直三棱柱,其中P為棱上的任意一點(diǎn),設(shè)平面PAB與平面的交線為QR.
(1)求證:AB∥QR;
(2)若P為棱上的中點(diǎn),求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱側(cè)棱和底面垂直的棱柱中,平面側(cè)面,,線段AC、上分別有一點(diǎn)E、F且滿足,.
求證:;
求點(diǎn)E到直線的距離;
求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為支援邊遠(yuǎn)地區(qū)教育事業(yè)的發(fā)展,現(xiàn)有5名師范大學(xué)畢業(yè)生主動要求赴西部某地區(qū)三所不同的學(xué)校去支教,每個學(xué)校至少去1人,甲、乙不能安排在同一所學(xué)校,則不同的安排方法有( )
A.180種B.150種C.90種D.114種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(a>b>0)的離心率為,過橢圓的左、右焦點(diǎn)分別作傾斜角為的直線,分別交橢圓于A,B和C,D兩點(diǎn),當(dāng)時,直線AB與CD之間的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若AB不與x軸重合,點(diǎn)P在橢圓上,且滿足(t>0).若,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:上頂點(diǎn)為A,右頂點(diǎn)為B,離心率,O為坐標(biāo)原點(diǎn),原點(diǎn)到直線AB的距離為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線與橢圓C相交于E、F兩不同點(diǎn),若橢圓C上一點(diǎn)P滿足.求△EPF面積的最大值及此時的.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com