【題目】已知橢圓ab0)的離心率為,過橢圓的左、右焦點(diǎn)分別作傾斜角為的直線,分別交橢圓于A,BCD兩點(diǎn),當(dāng)時(shí),直線ABCD之間的距離為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若AB不與x軸重合,點(diǎn)P在橢圓上,且滿足t0.,求直線AB的方程.

【答案】1;(2.

【解析】

(1)當(dāng)時(shí),直線ABCD之間的距離為,得,所以,由橢圓C的離心率為,,可求橢圓方程.(2)先驗(yàn)證直線的斜率不存在時(shí),不滿足題意,當(dāng)直線的斜率存在時(shí),設(shè)方程為,聯(lián)立直線和橢圓方程,設(shè),由,把代入橢圓方程得,即可求AB方程.

解:(1)設(shè),由之間的距離為,得,所以,

由橢圓C的離心率為,得,所以,

所以橢圓C的標(biāo)準(zhǔn)方程為.

2)若直線的斜率不存在,則易得,得,顯然點(diǎn)不在橢圓上,舍去

因此設(shè)直線的方程為,設(shè),

將直線的方程與橢圓的方程聯(lián)立,整理得,

因?yàn)?/span>,所以,

則由,

P點(diǎn)坐標(biāo)代入橢圓C的方程,得;

帶入等式,

因此所求直線AB的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】非空集合關(guān)于運(yùn)算滿足:①對(duì)任意,都有;②存在使得對(duì)于一切都有,則稱是關(guān)于運(yùn)算的融洽集,現(xiàn)有下列集合與運(yùn)算:①是非負(fù)整數(shù)集,:實(shí)數(shù)的加法;②是偶數(shù)集,:實(shí)數(shù)的乘法;③是所有二次三項(xiàng)式構(gòu)成的集合,:多項(xiàng)式的乘法; ④,:實(shí)數(shù)的乘法;其中屬于融洽集的是________(請(qǐng)?zhí)顚懢幪?hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐ABCD中,AB=AD,BDCD,點(diǎn)E、F分別是棱BCBD的中點(diǎn).

1)求證:EF∥平面ACD;

2)求證:AEBD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于直線對(duì)稱,且圓心在軸上.

(1)求的標(biāo)準(zhǔn)方程;

(2)已經(jīng)動(dòng)點(diǎn)在直線上,過點(diǎn)的兩條切線、,切點(diǎn)分別為.

①記四邊形的面積為,求的最小值;

②證明直線恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,,分別為線段上的點(diǎn),且.

(1)證明:;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】向量,,函數(shù)

1)求的表達(dá)式,并在直角坐標(biāo)中畫出函數(shù)在區(qū)間上的草圖;

2)若方程上有兩個(gè)根、,求的取值范圍及的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,五面體ABCC1B1中,AB14.底面ABC 是正三角形,AB=2.四邊形BCC1B1是矩形,二面角ABCC1為直二面角.

1DAC上運(yùn)動(dòng),當(dāng)D在何處時(shí),有AB1//平面BDC1,并且說明理由;

2)當(dāng)AB1//平面BDC1時(shí),求二面角CBC1D余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn)軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)),點(diǎn)的極坐標(biāo)為設(shè)直線與曲線相交于兩點(diǎn)

1寫出曲線的直角坐標(biāo)方程和直線的普通方程;

2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連續(xù)拋擲同一顆骰子3次,則3次擲得的點(diǎn)數(shù)之和為9的概率是____

查看答案和解析>>

同步練習(xí)冊(cè)答案