【題目】經(jīng)過(guò)市場(chǎng)調(diào)查,某種商品在銷(xiāo)售中有如下關(guān)系:第x)天的銷(xiāo)售價(jià)格(單位:元/件)為,第x天的銷(xiāo)售量(單位:件)為為常數(shù)),且在第20天該商品的銷(xiāo)售收入為600元(銷(xiāo)售收入=銷(xiāo)售價(jià)格×銷(xiāo)售量).

1)求a的值,并求第15天該商品的銷(xiāo)售收入;

2)求在這30天中,該商品日銷(xiāo)售收入y的最大值.

【答案】1,第15天該商品的銷(xiāo)售收入為875元(2)最大值為1225.

【解析】

1)根據(jù)題意,列出第20天的銷(xiāo)售收入,可求值,再求第15天的銷(xiāo)售收入;

2)由題意,銷(xiāo)售價(jià)格為分段函數(shù),則根據(jù)分段,分別求銷(xiāo)售額的函數(shù),再分別計(jì)算兩段內(nèi)的最大值,比較即可求解.

1)當(dāng)時(shí),由,

解得.

從而可得(元),

即第15天該商品的銷(xiāo)售收入為875.

2)由題意可知

,

=

當(dāng)時(shí),.

故當(dāng)時(shí)y取最大值,.

當(dāng)時(shí),,.

故當(dāng)時(shí),該商品日銷(xiāo)售收入最大,最大值為1225.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)內(nèi)某汽車(chē)品牌一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)用表示,據(jù)統(tǒng)計(jì),隨機(jī)變量的概率分布如下:

0

1

2

3

1)求的值;

2)若每個(gè)月被消費(fèi)者投訴的次數(shù)互不影響,求該汽車(chē)品牌在五個(gè)月內(nèi)被消費(fèi)者投訴3次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù)).

1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),設(shè)的兩個(gè)極值點(diǎn),()恰為的零點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù),,的部分圖象如圖所示,有下列結(jié)論:

①函數(shù)的最小正周期為

②函數(shù)上的值域?yàn)?/span>

③函數(shù)的一條對(duì)稱軸是

④函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱

⑤函數(shù)上為減函數(shù)

其中正確的是______.(填寫(xiě)所有正確結(jié)論的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,摩天輪的半徑為點(diǎn)距地面的高度為,摩天輪按逆時(shí)針?lè)较蜃鲃蛩龠\(yùn)動(dòng),且每轉(zhuǎn)一圈,摩天輪上點(diǎn)的起始位置在最高點(diǎn).

(1)試確定點(diǎn)距離地面的高度(單位:)關(guān)于旋轉(zhuǎn)時(shí)間(單位:)的函數(shù)關(guān)系式;

(2)在摩天輪轉(zhuǎn)動(dòng)一圈內(nèi),有多長(zhǎng)時(shí)間點(diǎn)距離地面超過(guò)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,).

(1)求函數(shù)的零點(diǎn);

(2)設(shè)、、均為正整數(shù),且為最簡(jiǎn)根式,若存在,使得可唯一表示為的形式(),求證:

(3)已知,是否存在,使得

成立,若存在,試求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓及以下3個(gè)函數(shù):①;②;③,其中函數(shù)圖象能等分該橢圓面積的函數(shù)個(gè)數(shù)有(

A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,D,E分別為BC,PD的中點(diǎn),FAB上一點(diǎn),且.

1)求證:平面PAD;

2)求證:平面PAC

3)若二面角60°,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù) 滿足:,且 其中 ,則以向量 為法向量的直線的傾斜角的取值范圍是__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案