【題目】某班50名學(xué)生在一次數(shù)學(xué)測試中,成績?nèi)拷橛?0與100之間,將測試結(jié)果按如下方式分成五組:第一組[50,60,第二組[60,70,…,第五組[90,100].如圖所示是按上述分組方法得到的頻率分布直方圖.

若成績大于或等于60且小于80,認為合格,求該班在這次數(shù)學(xué)測試中成績合格的人數(shù);

從測試成績在[50,60[90,100]內(nèi)的所有學(xué)生中隨機抽取兩名同學(xué),設(shè)其測試成績分別為m、n,求事件“|m﹣n|>10”概率.

【答案】

【解析】

試題解析:I由直方圖知,成績在[60,80內(nèi)的人數(shù)為:50×10×0.18+0.040=29.所以該班在這次數(shù)學(xué)測試中成績合格的有29人.

II由直方圖知,成績在[50,60內(nèi)的人數(shù)為:50×10×0.004=2,

設(shè)成績?yōu)閤、y

成績在[90,100]的人數(shù)為50×10×0.006=3,設(shè)成績?yōu)閍、b、c,

若m,n∈[50,60時,只有xy一種情況,

若m,n∈[90,100]時,有ab,bc,ac三種情況,

若m,n分別在[50,60和[90,100]內(nèi)時,有

共有6種情況,所以基本事件總數(shù)為10種,

事件“|m﹣n|>10”所包含的基本事件個數(shù)有6種

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點,圓的圓心在圓的內(nèi)部,且直線被圓所截得的弦長為.點為圓上異于的任意一點,直線軸交于點,直線軸交于點.

(1)求圓的方程

(2)求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線;設(shè)為曲線上的一個不在軸上的動點,為坐標(biāo)原點,過點的平行線交曲線兩個不同的點.

(1)求曲線的方程;

(2)試探究的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;

(3)記的面積為的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點在坐標(biāo)原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標(biāo)為2,且.

(1)求拋物線的方程;

(2)過點作直線交拋物線于兩點,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,面為矩形,的中點,交于點.

證明:;

,求BC與平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國男子籃球職業(yè)聯(lián)賽總決賽采用七場四勝制(即先勝四場者獲勝),進入總決賽的甲乙兩隊中,若每一場比賽甲隊獲勝的概率為乙隊獲勝的概率為,假設(shè)每場比賽的結(jié)果互相獨立,現(xiàn)已賽完兩場,乙隊以2:0暫時領(lǐng)先.

(1)求甲隊獲得這次比賽勝利的概率;

(2)設(shè)比賽結(jié)束時兩隊比賽的場數(shù)為隨機變量,求隨機變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)如是函數(shù)的極值點,求實數(shù)的值并討論的單調(diào)性

(2)若是函數(shù)的極值點,且恒成立,求實數(shù)的取值范圍(注:已知常數(shù)滿足.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平面,四邊形是直角梯形,其中,. ,.

1)求異面直線所成角的大。

2)若平面內(nèi)有一經(jīng)過點的曲線,該曲線上的任一動點都滿足所成角的大小恰等于所成角.試判斷曲線的形狀并說明理由;

3)在平面內(nèi),設(shè)點是(2)題中的曲線在直角梯形內(nèi)部(包括邊界)的一段曲線上的動點,其中為曲線的交點.為圓心,為半徑的圓分別與梯形的邊、交于、兩點.當(dāng)點在曲線段上運動時,試求圓半徑的范圍及的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市要建成宜商、宜居的國際化新城,該城市的東城區(qū)、西城區(qū)分別引進8個廠家,現(xiàn)對兩個區(qū)域的16個廠家進行評估,綜合得分情況如莖葉圖所示.

(1)根據(jù)莖葉圖判斷哪個區(qū)域廠家的平均分較高;

(2)規(guī)定85分以上(含85分)為優(yōu)秀廠家,若從該兩個區(qū)域各選一個優(yōu)秀廠家,求得分差距不超過5分的概率.

查看答案和解析>>

同步練習(xí)冊答案