【題目】某校為了探索一種新的教學(xué)模式,進(jìn)行了一項(xiàng)課題實(shí)驗(yàn),甲班為實(shí)驗(yàn)班,乙班為對(duì)比班,甲乙兩班的人數(shù)均為50人,一年后對(duì)兩班進(jìn)行測(cè)試,測(cè)試成績(jī)的分組區(qū)間為80,90、90,100、100,110、110,120、120,130,由此得到兩個(gè)班測(cè)試成績(jī)的頻率分布直方圖:
(1)完成下面2×2列聯(lián)表,你能有97.5的把握認(rèn)為“這兩個(gè)班在這次測(cè)試中成績(jī)的差異與實(shí)施課題實(shí)驗(yàn)有關(guān)”嗎?并說(shuō)明理由;
成績(jī)小于100分 | 成績(jī)不小于100分 | 合計(jì) | |
甲班 | 50 | ||
乙班 |
| 50 | |
合計(jì) | 100 |
(2)根據(jù)所給數(shù)據(jù)可估計(jì)在這次測(cè)試中,甲班的平均分是105.8,請(qǐng)你估計(jì)乙班的平均分,并計(jì)算兩班平均分相差幾分?
附:
,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5. 024 | 6.635 | 7.879 | 10.828 |
【答案】(1)見(jiàn)解析;(2)4
【解析】分析:第一問(wèn)首先應(yīng)用題中的條件,結(jié)合頻率分布直方圖,得到相應(yīng)的數(shù)據(jù),完善列聯(lián)表,之后應(yīng)用公式求得觀測(cè)值,之后與臨界值比較大小,得到結(jié)果;第二問(wèn)應(yīng)用頻率分布直方圖中的相關(guān)數(shù)據(jù)得到對(duì)應(yīng)組的人數(shù),利用總分除以人數(shù)得到對(duì)應(yīng)的平均分,進(jìn)而得到兩個(gè)班的平均分的差距.
詳解:(1) ,,,,
,
∵,
∴有97.5的把握認(rèn)為這兩個(gè)班在這次測(cè)試中成績(jī)的差異與實(shí)施課題實(shí)驗(yàn)有關(guān)”
(2)乙班各段人數(shù)分別是:
80,90 | 90,100 | 100,110, | 110,120 | 120,130 |
4 | 20 | 15 | 10 | 1 |
估計(jì)乙班的平均分為:
兩班平均分相差4分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,
⑴時(shí),求函數(shù)的最大值和最小值;
⑵求的取值范圍,使在上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)多面體的直觀圖及三視圖如圖所示:(其中M,N分別是AF,BC的中點(diǎn)).
(1)求證:MN∥平面CDEF;
(2)求多面體A﹣CDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f (x)=a lnx++x (a≠0).
(1)若曲線y=f (x)在點(diǎn)(1,f (1))處的切線與直線x-2y=0垂直,求實(shí)數(shù)a的值;
(2)討論函數(shù)f (x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(a∈R)是奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)判斷并證明f(x)在R上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+)-1.
(1)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)將y=f(x)圖象上所有的點(diǎn)向右平行移動(dòng)個(gè)單位長(zhǎng)度,得到y=g(x)的圖象.若g(x)在(0,m)內(nèi)是單調(diào)函數(shù),求實(shí)數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線:上的點(diǎn)到其焦點(diǎn)的距離是.
(1)求的方程.
(2)過(guò)點(diǎn)作圓:的兩條切線,分別交于兩點(diǎn),若直線的斜率是,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣1+ (a∈R).
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)求函數(shù)f(x)的極值;
(3)當(dāng)a=1時(shí),若直線l:y=kx﹣1與曲線y=f(x)沒(méi)有公共點(diǎn),求k的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com