【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當時,若對任意的恒成立,求實數(shù)的值;
(3)求證:.
【答案】(Ⅰ)時,單調(diào)遞增區(qū)間為;時,單調(diào)遞減區(qū)間為,
單調(diào)遞增區(qū)間為;(Ⅱ);(Ⅲ)證明見解析
【解析】
試題分析:(1)先求導函數(shù)數(shù),利用,即可求函數(shù)的單調(diào)增區(qū)間,即可求函數(shù)的單調(diào)減區(qū)間;(2)若對任意的恒成立,對恒成立, 即可求實數(shù)的值;(3)要證原不等式成立,只需證:,即證:,結合(2)利用裂項相消法求和,根據(jù)放縮法可證.
試題解析:解:(1),∴時,,在上單調(diào)遞增:時,時,單調(diào)遞減,時,單調(diào)遞增.
(2)由(1),時,,∴,即,
記.,∴在上增,在上遞減,∴,故,得.
(3)時,,時,,
時,.
由(2)可知,即,則時,,故,
即原不等式成立.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直線PB與CD所成角的大小為,求BC的長;
(Ⅱ)求二面角B-PD-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在創(chuàng)建“全國文明衛(wèi)生城”過程中,某市“創(chuàng)城辦”為了調(diào)查市民對創(chuàng)城工作的了解情況,進行了一次創(chuàng)城知識問卷調(diào)查(一位市民只能參加一次).通過隨機抽樣,得到參加問卷調(diào)查的100人的得分(滿分100分)統(tǒng)計結果如下表所示:
(I)由頻數(shù)分布表可以大致認為,此次問卷調(diào)查的得分Z服從正態(tài)分布近似為這100人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),利用該正態(tài)分布,求P(37<Z≤79);
(II)在(I)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎勵方案:
①得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;
②每次獲贈的隨機話費和對應的概率為:
現(xiàn)有市民甲參加此次問卷調(diào)查,記 (單位:元)為該市民參加問卷調(diào)查獲贈的話費,求的分布列與數(shù)學期望.
附:參考數(shù)據(jù)與公式:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一家保險公司決定對推銷員實行目標管理,即給推銷員確定一個具體的銷售目標,確定的銷售目標是否合適,直接影響到公司的經(jīng)濟效益,如果目標定得過高,多數(shù)推銷員完不成任務,會使推銷員失去信心:如果目標定得太低,將不利于挖掘推銷員的工作潛力,下面一組數(shù)據(jù)是部分推銷員的月銷售額(單位:千元):
19.58 16.11 16.45 20.45 20.24 21.66 22.45 18.22 12.34
19.35 20.55 17.45 18.78 17.96 19.91 18.12 14.65 14.78
16.78 18.78 18.29 18.51 17.86 19.58 19.21 18.55 16.34
15.54 17.55 14.89 18.94 17.43 17.14 18.02 19.98 17.88
17.32 19.35 15.45 19.58 13.45 21.34 14.00 18.42 23.00
17.52 18.51 17.16 24.56 25.14
請根據(jù)這組樣本數(shù)據(jù)提出使65%的職工能夠完成銷售指標的建議.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個袋子中有4個紅球,6個綠球,采用不放回方式從中依次隨機地取出2個球.
(1)求第二次取到紅球的概率;
(2)求兩次取到的球顏色相同的概率;
(3)如果是4個紅球,n個綠球,已知取出的2個球都是紅球的概率為,那么n是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓中心在坐標原點,焦點在軸上,且過,直線與橢圓交于,兩點(,兩點不是左右頂點),若直線的斜率為時,弦的中點在直線上.
(Ⅰ)求橢圓的方程.
(Ⅱ)若以,兩點為直徑的圓過橢圓的右頂點,則直線是否經(jīng)過定點,若是,求出定點坐標,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】表示不超過的最大整數(shù),例,,.已知函數(shù),.
(1)求函數(shù)的定義域;
(2)求證:當且時,總有,并指出當為何值時取等號;
(3)解關于的不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、,焦距為,直線:與橢圓相交于、兩點,關于直線的對稱點在橢圓上.斜率為的直線與線段相交于點,與橢圓相交于、兩點.
(1)求橢圓的標準方程;
(2)求四邊形面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com