下列說(shuō)法正確的是( 。
A、函數(shù)y=
1
x
在定義域內(nèi)是減函數(shù)
B、根據(jù)函數(shù)定義,函數(shù)在不同定義域上,值域也應(yīng)不同
C、空集是任何集合的子集,但是空集沒(méi)有子集
D、函數(shù)的單調(diào)區(qū)間一定是其定義域的一個(gè)子集
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)反比例函數(shù)的單調(diào)性,定義域、值域的關(guān)系,任何集合和自身的關(guān)系,和單調(diào)性的定義即可找出正確說(shuō)法.
解答: 解:A.錯(cuò)誤,y=
1
x
是反比例函數(shù),在定義域內(nèi)不具有單調(diào)性;
B.錯(cuò)誤,不一定,比如y=x2,在不同定義域(0,+∞)和(-∞,0)上的值域相同為(0,+∞);
C.錯(cuò)誤,任何集合是自身的子集,所以空集是自身的子集,即空集有子集;
D.正確,根據(jù)單調(diào)性的定義,單調(diào)區(qū)間是定義在定義域上的,所以是定義域的一個(gè)子集.
故選D.
點(diǎn)評(píng):考查反比例函數(shù)的單調(diào)性,函數(shù)定義域和值域的關(guān)系,子集的概念,以及單調(diào)性的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}滿(mǎn)足a2+a4=20,a3+a5=40.則a5+a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
2x-3
x-2
的定義域是( 。
A、[
3
2
,+∞)
B、[
3
2
,2)∪(2,+∞)
C、(
3
2
,2)∪(2,+∞)
D、(-∞,2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=|2x+a|的單調(diào)遞減區(qū)間是(-∞,1],則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的值域:
(1)y=-2sin2x+2cosx+2;
(2)y=3cosx-
3
sinx,x∈[0,
π
2
];
(3)y=sinx+cosx+sinxcosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,且a2+b=3,過(guò)它的右焦點(diǎn)F分別作直線l1、l2,其中l(wèi)1交橢圓于P、Q兩點(diǎn),l2交橢圓于M、N兩點(diǎn),且l1⊥l2(如圖5所示).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求四邊形MPNQ的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l被兩平行直線3x+y-6=0和3x+y+3=0所截得的線段長(zhǎng)為3,且直線過(guò)點(diǎn)(1,0),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AB=
2

(1)求二面角A-PC-B的余弦值;
(2)設(shè)E為棱PC上的點(diǎn),滿(mǎn)足直線DE與平面PBC所成角的正弦值為
2
2
3
,求AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(ax2-x+3)在[2,4]上是增函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、a>1
B、0<a<1或a>1
C、
1
16
<a≤
1
8
D、
1
16
<a
1
8
或a>1

查看答案和解析>>

同步練習(xí)冊(cè)答案