【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù));在以原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(I)求曲線的極坐標方程和曲線的直角坐標方程;
(II)若射線與曲線,的交點分別為(異于原點),當斜率時,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有一直徑為8米的半圓形空地,現(xiàn)計劃種植甲、乙兩種水果,已知單位面積種植甲水果的經(jīng)濟價值是種植乙水果經(jīng)濟價值的5倍,但種植甲水果需要有輔助光照.半圓周上的處恰有一可旋轉光源滿足甲水果生長的需要,該光源照射范圍是,點在直徑上,且.
(1)若米,求的長;
(2)設, 求該空地產生最大經(jīng)濟價值時種植甲種水果的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左右焦點分別為,過作垂直于軸的直線交橢圓于兩點,且滿足.
(1)求橢圓的離心率;
(2)過作斜率為的直線交于兩點. 為坐標原點,若的面積為,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)準備投入適當?shù)膹V告費對產品進行促銷,在一年內預計銷售量Q(萬件)與廣告費x(萬元)之間的函數(shù)關系為Q= (x>1),已知生產該產品的年固定投入為3萬元,每生產1萬件該產品另需再投入32萬元,若每件銷售價為“年平均每件生產成本(生產成本不含廣告費)的150%”與“年平均每件所占廣告費的50%”之和.
(1)試將年利潤W(萬元)表示為年廣告費x(萬元)的函數(shù);(年利潤=銷售收入-成本)
(2)當年廣告費為多少萬元時,企業(yè)的年利潤最大?最大年利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)設該市有30萬居民,估計全市居民中月均用量不低于3噸的人數(shù),并說明理由;
(3)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產甲,乙兩種產品均需用兩種原料,已知生產1噸每種產品需用原料及每天原料的可用限額如下表所示,如果生產1噸甲,乙產品可獲利潤分別為3萬元、4萬元,則該企業(yè)可獲得最大利潤為__________萬元.
甲 | 乙 | 原料限額 | |
A(噸) | 3 | 2 | 12 |
B(噸) | 1 | 2 | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是直線與橢圓的一個公共點,分別為該橢圓的左右焦點,設取得最小值時橢圓為.
(I)求橢圓的方程;
(II)已知是橢圓上關于軸對稱的兩點,是橢圓上異于的任意一點,直線分別與軸交于點,試判斷是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圍建一個面積為360的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,如圖所示,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設利用的舊墻的長度為(單位:),修建此矩形場地圍墻的總費用為(單位:元)
(1)將表示為的函數(shù);
(2)試確定,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com