已知P為雙曲線3x2-5y2=15上的點,F1、F2為其兩個焦點,且△F1PF2的面積是3,則∠F1PF2的大小為_________________.

60°

解析:依題意,|PF1|-|PF2|=2,|F1F2|=4,

∴|PF1|2+|PF2|2-2|PF1||PF2|=20.                                 ①

又|PF1|2+|PF2|2-2|PF1||PF2|cos∠F1PF2=|F1F2|2,        ②

S=|PF1||PF2|sin∠F1PF2,                                          ③

由①②③得=,

即tan=,∠F1PF2=60°.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線3x2-y2=3,過點P(2,1)作直線l交雙曲線于A,B兩點.
(1)求弦AB中點M的軌跡.
(2)若P恰為AB中點,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=ax+1與雙曲線3x2-y2=1;
(1)當a為何值時,直線與雙曲線有一個交點;
(2)直線與雙曲線交于P、Q兩點且以PQ為直徑的圓過坐標原點,求a值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知經(jīng)過點P(0,2)且以
d
=(1,a)
為一個方向向量的直線l與雙曲線3x2-y2=1相交于不同兩點A、B.
(1)求實數(shù)a的取值范圍;
(2)若點A、B均在已知雙曲線的右支上,且滿足
OA
OB
=0
,求實數(shù)a的值;
(3)是否存在這樣的實數(shù)a,使得A、B兩點關于直線y=
1
2
x-8
對稱?若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P為雙曲線3x2-5y2=15上的點,F1、F2為其兩個焦點,且△F1PF2的面積是3,則∠F1PF2的大小為_________________.

查看答案和解析>>

同步練習冊答案