【題目】(本題滿(mǎn)分12分)已知函數(shù)(R).

1)當(dāng)取什么值時(shí),函數(shù)取得最大值,并求其最大值;

2)若為銳角,且,求的值.

【答案】(本小題主要考查三角函數(shù)性質(zhì), 同角三角函數(shù)的基本關(guān)系、兩倍角公式等知識(shí), 考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法和運(yùn)算求解能力)

(1) :

…… 1

…… 2

. …… 3

當(dāng),Z時(shí),函數(shù)取得最大值,其值為.

…… 5

(2)解法1:∵, ∴. …… 6

. …… 7

為銳角,即, ∴.

. …… 8

. …… 9

. …… 10

.

.

(不合題意,舍去) …… 11

. …… 12

解法2: ∵, ∴.

. …… 7

. …… 8

為銳角,即,

. …… 9

. …… 10

. …… 12

解法3:∵, ∴.

. …… 7

為銳角,即, ∴.

. …… 8

…… 9

…… 10

. …… 12

【解析】

(1)由倍角公式,輔助角公式,化簡(jiǎn)fx),利用三角函數(shù)的圖像和性質(zhì)即可得解.

(2)把代入fx)的解析式得f)的解析式,可求得,進(jìn)而求得.

(1)fx)=2sinxcosx+cos2x=sin2x+cos2x,

∴當(dāng),即Z)時(shí),函數(shù)fx)取得最大值,其值為

(2)∵,∴

∵θ為銳角,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃購(gòu)買(mǎi)2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買(mǎi)這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買(mǎi),則每個(gè)500元.現(xiàn)需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買(mǎi)幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得如圖柱狀圖:
以這100臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,記X表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),n表示購(gòu)買(mǎi)2臺(tái)機(jī)器的同時(shí)購(gòu)買(mǎi)的易損零件數(shù).

(1)求X的分布列;
(2)若要求P(X≤n)≥0.5,確定n的最小值;
(3)以購(gòu)買(mǎi)易損零件所需費(fèi)用的期望值為決策依據(jù),在n=19與n=20之中選其一,應(yīng)選用哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)解不等式

(2)若函數(shù),其中為奇函數(shù),為偶函數(shù),若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: =1(a>b>0)的一個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)P( )在橢圓E上.
(1)求橢圓E的方程;
(2)設(shè)不過(guò)原點(diǎn)O且斜率為 的直線(xiàn)l與橢圓E交于不同的兩點(diǎn)A,B,線(xiàn)段AB的中點(diǎn)為M,直線(xiàn)OM與橢圓E交于C,D,
證明:︳MA︳︳MB︳=︳MC︳︳MD︳

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)fx)=ax2+x

(Ⅰ)當(dāng)a>0時(shí),求證:對(duì)任意的x1x2R都有[fx1)+fx2)]成立;

(Ⅱ)當(dāng)x∈[0,2]時(shí),|fx)|≤1恒成立,求實(shí)數(shù)a的取值范圍;

(Ⅲ)若a=,點(diǎn)pm,n2)(mZ,nZ)是函數(shù)y=fx)圖象上的點(diǎn),求mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)均相等的正四棱錐P-ABCD中,O為底面正方形的重心,M,N分別為側(cè)棱PAPB的中點(diǎn),有下列結(jié)論:

PC∥平面OMN;

②平面PCD∥平面OMN;

OMPA;

④直線(xiàn)PD與直線(xiàn)MN所成角的大小為90°.

其中正確結(jié)論的序號(hào)是______.(寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M的方程為x 2+y-22=1,直線(xiàn)l的方程為x-2y=0,點(diǎn)P在直線(xiàn)l上,過(guò)P點(diǎn)作圓M的切線(xiàn)PA,PB,切點(diǎn)為A,B

1APB=60°,試求點(diǎn)P的坐標(biāo);

2若P點(diǎn)的坐標(biāo)為2,1,過(guò)P作直線(xiàn)與圓M交于C,D兩點(diǎn),當(dāng)時(shí),求直線(xiàn)CD的方程;

3求證:經(jīng)過(guò)A,P,M三點(diǎn)的圓必過(guò)定點(diǎn),并求出所有定點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是圓柱OO′的軸截面,點(diǎn)P在圓柱OO′的底面圓周上,圓柱OO′的底面圓的半徑OA=1,側(cè)面積為2π,∠AOP=60°.

(1)求證:PB⊥平面APD;

(2)是否存在點(diǎn)G在PD上,使得AG⊥BD;并說(shuō)明理由.

(3)求三棱錐D-AGB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,分別為橢圓的左、右焦點(diǎn),過(guò)的直線(xiàn)相交于、兩點(diǎn),的周長(zhǎng)為

(1)求橢圓的方程;

(2)若橢圓上存在點(diǎn),使得四邊形為平行四邊形,求此時(shí)直線(xiàn)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案