已知函數(shù)f(x)=lg
1-x
1+x

(1)求f(x)的定義域,
(2)證明f(x)的定義域內(nèi)的單調(diào)性.
考點(diǎn):對數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意可得
1-x
1+x
>0,從而解得;
(2)由復(fù)合函數(shù)的單調(diào)性判斷即可.
解答: 解:(1)由題意,
1-x
1+x
>0,
解得,-<x<1,
故f(x)的定義域?yàn)椋?1,1);
(2)證明:∵y=
1-x
1+x
=-1+
2
1+x
在(-1,1)上是減函數(shù),
又∵y=lgx在其定義域上是增函數(shù),
∴f(x)=lg
1-x
1+x
在其定義域內(nèi)是減函數(shù).
點(diǎn)評:本題考查了函數(shù)的定義域及函數(shù)的單調(diào)性的判斷,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=2px的焦點(diǎn)與橢圓
x2
9
+
y2
5
=1
的右焦點(diǎn)重合,則該拋物線的準(zhǔn)線方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=k(x+1)與曲線y=5+
4x-x2
有公共點(diǎn),求k取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐V-ABC中,VA=VC,AB=BC.求證:VB⊥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程2x2+3x-5m=0的兩根都小于1,則求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條異面直線a,b的夾角為60°,
a
,
b
分別為直線a,b的方向向量,則<
a
,
b
>=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinxcosx+2
3
cos2x-
3
,x∈R.
(1)求函數(shù)f(x)的周期和最小值及取得最小值時(shí)的x的集合;
(2)當(dāng)x∈[0,
π
2
]時(shí),求f(x)的值域;
(3)在銳角△ABC中,若f(A)=1,
AB
AC
=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為
x=1-
2
2
t
y=-3+
2
2
t
,(t∈R,t為參數(shù)),則直線l的縱截距是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,拋物線y=ax2(其中a>0)上任意一點(diǎn)與點(diǎn)P(0,
1
4a
)的距離等于它到直線y=-1的距離.
(I)求拋物線的方程;
(Ⅱ)若點(diǎn)M的坐標(biāo)為(0,2),N為拋物線上任意一點(diǎn),是否存在垂直于y軸的直線l,使直線l被以MN為直徑的圓截得的弦長恒為常數(shù)?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案