據(jù)環(huán)保部門測定,某處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源距離的平方成反比,比例常數(shù)為.現(xiàn)已知相距18的A,B兩家化工廠(污染源)的污染強(qiáng)度分別為,它們連線上任意一點C處的污染指數(shù)等于兩化工廠對該處的污染指數(shù)之和.設(shè)().
(1)試將表示為的函數(shù); (2)若,且時,取得最小值,試求的值.
(1) , (2) 8.
解析試題分析:(1)解實際問題應(yīng)用題,關(guān)鍵要正確理解題意,正確列出等量關(guān)系,注意考慮函數(shù)定義域. 設(shè)點C受A污染源污染程度為,點C受B污染源污染程度為,其中為比例系數(shù),且.從而點C處受污染程度.定義域為 (2) 因為,所以,,求復(fù)雜分式函數(shù)最值,通?紤]利用導(dǎo)數(shù)求解. ,令,得,因此函數(shù)在單調(diào)減,在單調(diào)增,即在時函數(shù)取極小值,也是最小值. 又此時,解得,經(jīng)驗證符合題意.
解:(1)設(shè)點C受A污染源污染程度為,點C受B污染源污染程度為,其中為比例系數(shù),且. 4分
從而點C處受污染程度. 6分
(2)因為,所以,, 8分
,令,得, 12分
又此時,解得,經(jīng)驗證符合題意.
所以,污染源B的污染強(qiáng)度的值為8. 14分
考點:利用導(dǎo)數(shù)求函數(shù)值域
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),為常數(shù).
(1)若函數(shù)在處的切線與軸平行,求的值;
(2)當(dāng)時,試比較與的大;
(3)若函數(shù)有兩個零點、,試證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) ,.
(1)當(dāng) 時,求函數(shù) 的最小值;
(2)當(dāng) 時,求證:無論取何值,直線均不可能與函數(shù)相切;
(3)是否存在實數(shù),對任意的 ,且,有恒成立,若存在求出的取值范圍,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•浙江)已知a∈R,函數(shù)f(x)=2x3﹣3(a+1)x2+6ax
(Ⅰ)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若|a|>1,求f(x)在閉區(qū)間[0,|2a|]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3-ax+1.
(1)求x=1時,f(x)取得極值,求a的值;
(2)求f(x)在[0,1]上的最小值;
(3)若對任意m∈R,直線y=-x+m都不是曲線y=f(x)的切線,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若函數(shù)的圖象切x軸于點(2,0),求a、b的值;
(2)設(shè)函數(shù)的圖象上任意一點的切線斜率為k,試求的充要條件;
(3)若函數(shù)的圖象上任意不同的兩點的連線的斜率小于l,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若函數(shù)在上為減函數(shù),求實數(shù)的最小值;
(2)若存在,使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖像與直線恰有兩個交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性;
(2)設(shè),求在上的最大值;
(3)試證明:對任意,不等式都成立(其中是自然對數(shù)的底數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com