已知向量,函數(shù)
(Ⅰ)求函數(shù)f(x)的最小正周期T;
(Ⅱ)已知a、b、c分別為△ABC內(nèi)角A、B、C的對邊,其中A為銳角,,且f(A)=1,求A,b和△ABC的面積S.
【答案】分析:(I)利用向量數(shù)量積的坐標(biāo)表示可得,結(jié)合輔助角公式可得,f(x)=sin(2x-),利用周期公式可求
(II)由結(jié)合可得,,由余弦定理可得,a2=b2+c2-2bccosA,從而有,即b2-4b+4=0,解方程可得b,代入三角形面積公式可求.
解答:(本小題滿分12分)
解:(Ⅰ)=(2分)
===(4分)
因?yàn)棣?2,所以(6分)
(Ⅱ)
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124733321897718/SYS201310251247333218977015_DA/14.png">,所以,(8分)
則a2=b2+c2-2bccosA,所以,即b2-4b+4=0
則b=2(10分)
從而(12分)
點(diǎn)評:本題主要考查了向量的數(shù)量積的坐標(biāo)表示,輔助角公式的應(yīng)用,三角函數(shù)的周期公式的應(yīng)用,由三角函數(shù)值求角,及三角形的面積公式.綜合的知識比較多,但試題的難度不大,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年寧夏銀川一中高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知向量,函數(shù)(ω>0)的圖象的兩相鄰對稱軸間的距離為
(1)求ω值;
(2)若,且f(x)=m有且僅有一個(gè)實(shí)根,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市高新區(qū)高三(上)12月統(tǒng)測數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知向量,函數(shù)的最大值為6,最小正周期為π.
(1)求A,ω的值;
(2)將函數(shù)y=f(x)的圖象向左平移個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象.求上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省武漢二中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知向量,函數(shù)的圖象一個(gè)對稱中心與它相鄰的一條對稱軸之間的距離為1,且其圖象過點(diǎn)
(1)求f(x)的解析式;
(2)當(dāng)x∈[-1,1]時(shí),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三第四次診斷考試文科數(shù)學(xué)試卷 題型:解答題

已知向量,函數(shù)(Ⅰ)求函數(shù)的最小正周期;(Ⅱ)將函數(shù)的圖像向左平移上個(gè)單位后,再將所得圖像上所有點(diǎn)的橫坐標(biāo)伸長為原來的3倍,得到函數(shù)的圖像,求函數(shù)的解析式及其對稱中心坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省高考適應(yīng)性測試數(shù)學(xué)(理) 題型:解答題

(本小題滿分12分)

已知向量,函數(shù).求:

(Ⅰ)函數(shù)的最小值;

    (Ⅱ)函數(shù)的單調(diào)遞增區(qū)間.

 

查看答案和解析>>

同步練習(xí)冊答案