【題目】已知橢圓的左、右焦點分別為、,直線:與橢圓相交于、兩點,橢圓的上頂點與焦點關(guān)于直線對稱,且.斜率為的直線與線段相交于點,與橢圓相交于、兩點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求四邊形面積的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù):
125 121 123 125 127 129 125 128 130
129 126 124 125 127 126 122 124 125
126 128
(1)填寫下面的頻率分布表:
分組 | 頻數(shù)累計 | 頻數(shù) | 頻率 |
合計 |
(2)作出頻率分布直方圖.
(3)根據(jù)頻率分布直方圖或頻率分布表求這組數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過點,且與拋物線相交于兩點,與軸交于點,其中點在第四象限,為坐標(biāo)原點.
(Ⅰ)當(dāng)是中點時,求直線的方程;
(Ⅱ)以為直徑的圓交直線于點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是的中點,是線段上的一點,且,,將沿折起使得二面角是直二面角.
(l)求證:平面;
(2)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)為
當(dāng)時,若函數(shù)在R上有且只有一個零點,求實數(shù)a的取值范圍;
設(shè),點是曲線上的一個定點,是否存在實數(shù)使得成立?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,集合P={x|x(x-2)≥0},M={x|a<x<a+3}.
(1)求集合UP;
(2)若a=1,求集合P∩M;
(3)若UPM,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題:①當(dāng)為任意實數(shù)時,直線恒過定點P,則過點P且焦點在軸上的拋物線的標(biāo)準(zhǔn)方程是;②已知雙曲線的右焦點為,一條漸近線方程為 ,則雙曲線的標(biāo)準(zhǔn)方程是;③拋物線的準(zhǔn)線方程為;④已知雙曲線 ,其離心率,則的取值范圍是.
其中正確命題的序號是___________.(把你認為正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O是△ABC內(nèi)一點,∠AOB=150°,∠BOC=90°,設(shè)=,=,=,且||=2,||=1,||=3,試用和表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)軸,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程及曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線交于兩點,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com