【題目】已知函數(shù).

1)當(dāng)時,討論函數(shù)的單調(diào)性;

2)若函數(shù)在區(qū)間上無零點,求的取值范圍.

【答案】1)減區(qū)間為,單調(diào)遞增區(qū)間為;(2

【解析】

1)把代入到中求出,令求出的范圍即為函數(shù)的增區(qū)間,令求出的范圍即為函數(shù)的減區(qū)間;

2時不可能恒成立,所以要使函數(shù)在上無零點,只需要對恒成立,列出不等式解出大于一個函數(shù),利用導(dǎo)數(shù)得到函數(shù)的單調(diào)性,根據(jù)函

數(shù)的增減性得到這個函數(shù)的最大值即可得到的取值范圍;

解:(1)當(dāng)時,,定義域為,則,

,得,令,得

的單調(diào)遞減區(qū)間為(0,2),單調(diào)遞增區(qū)間為.

2)∵函數(shù)在區(qū)間上無零點,

∴在區(qū)間上,恒成立或恒成立,

,

,

①當(dāng)時,

在區(qū)間上,,

,

在區(qū)間上,,

∴在區(qū)間上,單調(diào)遞減,∴,

,∴

在區(qū)間上恒成立,滿足題意;

②當(dāng)時,,,

,

,,∴,

上有零點,即函數(shù)在區(qū)間上有零點,不符合題意.

綜上所述,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求函數(shù)在區(qū)間上的最值;

2)討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是2018年第一季度五省GDP情況圖,則下列描述中不正確的是( )

A. 與去年同期相比2018年第一季度五個省的GDP總量均實現(xiàn)了增長

B. 2018年第一季度GDP增速由高到低排位第5的是浙江省

C. 2018年第一季度GDP總量和增速由高到低排位均居同一位的省只有1

D. 去年同期河南省的GDP總量不超過4000億元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直四棱柱的底面是菱形,,,,分別是,的中點.

1)證明:平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年寒假是特殊的寒假,因為抗擊疫情全體學(xué)生只能在家進行網(wǎng)上在線學(xué)習(xí),為了研究學(xué)生在網(wǎng)上學(xué)習(xí)的情況,某學(xué)校在網(wǎng)上隨機抽取120名學(xué)生對線上教育進行調(diào)查,其中男生與女生的人數(shù)之比為1113,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.

1)完成列聯(lián)表,并回答能否有99%的把握認(rèn)為對“線上教育是否滿意與性別有關(guān)”;

滿意

不滿意

總計

男生

20

女生

15

合計

120

2)從被調(diào)查的對線上教育滿意的學(xué)生中,利用分層抽樣抽取8名學(xué)生,再在8名學(xué)生中抽取3名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗介紹,其中抽取男生的個數(shù)為,求出的分布列及期望值.

參考公式:附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

0.706

3.841

5.024

6.635

7.879

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》卷第五《商功》中,有“賈令芻童,上廣一尺,袤二尺,下廣三尺,袤四尺,高一尺!,意思是:“假設(shè)一個芻童,上底面寬1尺,長2尺;下底面寬3尺,長4尺,高1尺(如圖)。”(注:芻童為上下底面為相互平行的不相似長方形,兩底面的中心連線與底面垂直的幾何體),若該幾何體所有頂點在一球體的表面上,則該球體的表面積為( )

A. 平方尺 B. 平方尺 C. 平方尺 D. 平方尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的部分圖象如圖所示,其中,,.

)求的解析式;

)求在區(qū)間上的最大值和最小值;

)寫出的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).

1)已知,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;

2)對于(1)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=CBD,AB=BD

1)證明:平面ACD⊥平面ABC;

2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

查看答案和解析>>

同步練習(xí)冊答案