【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).

1)已知,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;

2)對(duì)于(1)中的函數(shù)和函數(shù),若對(duì)任意,總存在,使得成立,求實(shí)數(shù)的值.

【答案】(1)減區(qū)間為,增區(qū)間為,值域?yàn)?/span>;(2) .

【解析】

(1)設(shè),則,由題意求出的增減性,,從而可求出的單調(diào)區(qū)間;結(jié)合單調(diào)性及區(qū)間端點(diǎn)處的函數(shù)值即可求出值域.

(2)由一次函數(shù)的單調(diào)性可知,結(jié)合已知條件可知,從而可求出參數(shù)的值.

(1)解:設(shè) ,則 ,因?yàn)?/span>,則.

由已知性質(zhì)可知上為減函數(shù),上為增函數(shù).

所以減區(qū)間為,增區(qū)間為.

當(dāng),即時(shí),,又,

所以,所以值域?yàn)?/span>.

(2)因?yàn)?/span>為減函數(shù),所以當(dāng)時(shí),.

因?yàn)閷?duì)任意,總存在,使得成立,

所以值域是值域的子集,即,則

解得,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的個(gè)數(shù)是( )

①設(shè)某大學(xué)的女生體重與身高具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法建立的線性回歸方程為 ,則若該大學(xué)某女生身高增加,則其體重約增加

②關(guān)于的方程的兩根可分別作為橢圓和雙曲線的離心率;

③過(guò)定圓上一定點(diǎn)作圓的動(dòng)弦,為原點(diǎn),若,則動(dòng)點(diǎn)的軌跡為橢圓;

④已知是橢圓的左焦點(diǎn),設(shè)動(dòng)點(diǎn)在橢圓上,若直線的斜率大于,則直線為原點(diǎn))的斜率的取值范圍是.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

2)若函數(shù)在區(qū)間上無(wú)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系(),點(diǎn)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段的延長(zhǎng)線上,且滿足,點(diǎn)的軌跡為

(Ⅰ)求的極坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)的極坐標(biāo)為,求面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲在平面四邊形ABCD中,已知∠A=45°C=90°,ADC=105°,AB=BD現(xiàn)將四邊形ABCD沿BD折起,使平ABD⊥平面BDC(如圖乙)設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).

(1)求證:DC⊥平面ABC;

(2)求BF與平面ABC所成角的正弦值;

(3)求二面角B-EF-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若是函數(shù)的極值點(diǎn),求曲線在點(diǎn)處的切線方程;

2)求函數(shù)的單調(diào)區(qū)間;

3)已知,當(dāng),試比較的大小,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了了解本公司職員的早餐費(fèi)用情況,抽樣調(diào)査了100位職員的早餐日平均費(fèi)用(單位:元),得到如圖所示的頻率分布直方圖,圖中標(biāo)注的數(shù)字模糊不清.

1)試根據(jù)頻率分布直方圖求的值,并估計(jì)該公司職員早餐日平均費(fèi)用的眾數(shù);

2) 已知該公司有1000名職員,試估計(jì)該公司有多少職員早餐日平均費(fèi)用多于8元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了確定下一年度投入某種產(chǎn)品的宣傳費(fèi)用,需了解年宣傳費(fèi)(單位:萬(wàn)元)對(duì)年銷量(單位:噸)和年利潤(rùn)(單位:萬(wàn)元)的影響對(duì)近6年宣傳費(fèi)和年銷量的數(shù)據(jù)做了初步統(tǒng)計(jì),得到如下數(shù)據(jù):

年份

2013

2014

2015

2016

2017

2018

年宣傳費(fèi)(萬(wàn)元)

38

48

58

68

78

88

年銷售量(噸)

16.8

18.8

20.7

22.4

24.0

25.5

經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)(萬(wàn)元)與年銷售量(噸)之間近似滿足關(guān)系式,兩邊取對(duì)數(shù),即,令,即對(duì)上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如下表:

75.3

24.6

18.3

101.4

1)從表中所給出的6年年銷售量數(shù)據(jù)中任選2年做年銷售量的調(diào)研,求所選數(shù)據(jù)中至多有一年年銷售量低于21噸的概率.

2)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;

3)若生產(chǎn)該產(chǎn)品的固定成本為200(萬(wàn)元),且每生產(chǎn)1(噸)產(chǎn)品的生產(chǎn)成本為20(萬(wàn)元)(總成本=固定成本+生產(chǎn)成本+年宣傳費(fèi)),銷售收入為(萬(wàn)元),假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣(mài)掉),2019年該公司計(jì)劃投入108萬(wàn)元宣傳費(fèi),你認(rèn)為該決策合理嗎?請(qǐng)說(shuō)明理由.(其中為自然對(duì)數(shù)的底數(shù),

附:對(duì)于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直四棱柱的底面是菱形,,,E,M,N分別是,,的中點(diǎn).

1)證明:平面

2)求點(diǎn)C到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案