精英家教網 > 高中數學 > 題目詳情

【題目】已知f(x+y)=f(x)+f(y)且f(1)=2,則f(1)+f(2)+…+f(n)不能等于(
A.f(1)+2f(1)+…+nf(1)
B.f(
C.n(n+1)
D.n(n+1)f(1)

【答案】D
【解析】解:令x=n,y=1,得f(n+1)=f(n)+f(1)=f(n)+2, ∴f(n+1)﹣f(n)=2,
可得{f(n)}構成以f(1)=2為首項,公差為2的等差數列,
∴f(n)=2+(n﹣1)×2=2n,
因此,f(1)+f(2)+…+f(n)= = =n(n+1)
對于A,由于f(1)+2f(1)+3f(1)+…+nf(1)
=f(1)(1+2+…+n)=2× =n(n+1),故A正確;
對于B,由于f(n)=2n,所以f[ ]=2× =n(n+1),得B正確;
對于C,與求出的前n項和的通項一模一樣,故C正確.
對于D,由于n(n+1)f(1)=2n(n+1),故D不正確.
故選:D

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x﹣a|,g(x)= ,若方程f(x)=g(x)﹣a有且只有一個實數根,則實數a的取值集合為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)的定義域為[﹣1,5],部分對應值如表,

x

﹣1

0

4

f(x)

1

2

2

f(x)的導函數y=f′(x)的圖象(該圖象關于(2,0)中心對稱) 如圖所示.
下列關于f(x)的命題:
①函數f(x)的極大值點為 0與4;
②函數f(x)在[0,2]上是減函數;
③函數y=f(x)﹣a零點的個數可能為0、1、2、3、4個;
④如果當時x∈[﹣1,t],f(x)的最大值是2,那么t的最大值為5;.
⑤函數f(x)的圖象在a=1是上凸的
其中一定正確命題的序號是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一臺機器按不同的轉速生產出來的某機械零件有一些會有缺點,每小時生產有缺點零件的多少,隨機器的運轉的速度而變化,具有線性相關關系,下表為抽樣試驗的結果:

轉速x(轉/秒)

8

10

12

14

16

每小時生產有缺點的零件數y(件)

5

7

8

9

11

參考公式: , = =
(1)如果y對x有線性相關關系,求回歸方程;
(2)若實際生產中,允許每小時生產的產品中有缺點的零件最多有10個,那么機器的運轉速度應控制在設么范圍內?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200.220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖示. (Ⅰ)求直方圖中x的值;
(Ⅱ)求月平均用電量的眾數和中位數;
(Ⅲ)在月平均用電量為[220,240),[240,260),[260,280)的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在[220,240)的用戶中應抽取多少戶?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn , 且Sn=2n2+n,n∈N* , 數列{bn}滿足an=4log2bn+3,n∈N*
(1)求an , bn;
(2)求數列{anbn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)=|x﹣3|+|x﹣4|. (Ⅰ)解不等式f(x)≤2;
(Ⅱ)若對任意實數x∈[5,9],f(x)≤ax﹣1恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列 Sn為其前n項和.計算得 觀察上述結果,推測出計算Sn的公式,并用數學歸納法加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .

(1)求函數的最小正周期;

(2)求函數在區(qū)間上的最大值和最小值.

查看答案和解析>>

同步練習冊答案