設(shè)函數(shù)f(x)=
x+4
2-x
的定義域為A,函數(shù)g(x)=
1
a-|x-4|
的定義域為B,若A∩B=∅,求實數(shù)a的取值范圍.
考點:絕對值不等式的解法,其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:通過分式不等式的解法求出集合A,絕對值不等式的解法求出集合B,利用A∩B=∅,求實數(shù)a的取值范圍.
解答: 解:函數(shù)f(x)=
x+4
2-x
的定義域為A,
x+4
2-x
≥0
,解得:-4≤x<2.
∴A={x|-4≤x<2}.
函數(shù)g(x)=
1
a-|x-4|
的定義域為B,
∴a-|x-4|>0,解得-a-4<x<a+4,
∴B={x|-a-4<x<a+4}.
∵A∩B=∅,
∴a+4<-4或-a-4≥2,
解得a<-8或a≤-6,
實數(shù)a的取值范圍(-∞,-8).
點評:本題考查函數(shù)的定義域,分式不等式以及絕對值不等式的解法,集合的交集的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)n為正整數(shù),(x-
1
x
x
)
2n
展開式中存在常數(shù)項,則n的一個可能取值為( 。
A、16B、10C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1-
1
x
的定義域為(  )
A、{x|0<x≤1}
B、{x|x<0或x≥1}
C、{x|-1<x<1}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:
1
x+1
-3≥
2x2
1-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把10粒不同的珠子隨機放到三個大小不均的空盒子中.若三個盒子中較小的一個套在另一個較大的盒子之中,另一個分開放,且要求每個盒子中的珠子數(shù)都是奇數(shù),求其中某個盒子中有9個珠子的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-lnx-1.
(Ⅰ)求函數(shù)f(x)在x=2處的切線方程;
(Ⅱ)若x∈(0,+∞)時,f(x)≥ax-2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
2
3
,an+1=
n
n+1
an,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:
(1)丨x+3丨≥丨x丨
(2)(1-丨x丨)(x-1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD是等腰梯形,且AB∥CD,O是AB中點,PO⊥平面ABCD,PO=CD=DA=
1
2
AB=4,M是PA中點.
(1)證明:平面PBC∥平面ODM;
(2)求點A到平面PCD的距離.

查看答案和解析>>

同步練習(xí)冊答案