雙曲線
x2
16
-
y2
9
=1
的漸近線方程為(  )
A、y=±
3
4
x
B、x=±
5
4
y
C、x=±
5
3
y
D、y=±
5
3
x
考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)標(biāo)準(zhǔn)方程,求出a和 b的值,再根據(jù)焦點(diǎn)在x軸上,求出漸近線方程.
解答: 解:雙曲線
x2
16
-
y2
9
=1
的焦點(diǎn)在x軸上,a=4,b=3,
∴漸近線方程為y=±
b
a
x
=±
3
4
x.
故選A.
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=x3-x,則過點(diǎn)(1,0)的曲線的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)棱長為2的正方體,被一個(gè)平面截后所得幾何體的三視圖如圖所示,則該截面的面積為( 。
A、
3
10
2
B、4
C、
9
2
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M是橢圓
x2
9
+
y2
16
=1
上的點(diǎn),若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則|MF1|+|MF2|=(  )
A、6B、8C、18D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(
π
4
-2x)
的單調(diào)遞減區(qū)間是( 。
A、[kπ+
π
8
,kπ+
5
8
π]
B、[kπ-
π
8
,kπ+
3
8
π
]
C、[2kπ-
π
8
,2kπ+
3
8
π]
D、[2kπ-
3
8
π,2kπ+
π
8
](以上k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人年初向銀行貸款a元用于購房,銀行貸款的年利率為r,按復(fù)利計(jì)算(即本年的利息計(jì)入次年的本金),若這筆貸款要分10年等額還清,每年年初還一次,并且從借款后次年年初開始?xì)w還,則每年應(yīng)還(  )元.
A、
a(1+r)9
10
B、
a(1+r)10
10
C、
ar(1+r)9
(1+r)9-1
D、
ar(1+r)10
(1+r)10-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|
1
2
2x<2
},B={x|lgx>0},則A∪B=( 。
A、{x|x>-1}
B、{x|-1<x<1}
C、∅
D、{x|-1<x<1或x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正項(xiàng)等比數(shù)列{an}中,已知a3a5=64,則a1+a7的最小值為( 。
A、64B、32C、16D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,F(xiàn)分別是雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的左頂點(diǎn)、右焦點(diǎn),過F的直線l與C的一條漸近線垂直且與另一條漸近線和y軸分別交于P,Q兩點(diǎn).若AP⊥AQ,則C的離心率是( 。
A、
2
B、
3
C、
1+
13
4
D、
1+
17
4

查看答案和解析>>

同步練習(xí)冊(cè)答案