【題目】已知圓,圓與軸交于兩點(diǎn),過(guò)點(diǎn)的圓的切線為是圓上異于的一點(diǎn),垂直于軸,垂足為,是的中點(diǎn),延長(zhǎng)分別交于.
(1)若點(diǎn),求以為直徑的圓的方程,并判斷是否在圓上;
(2)當(dāng)在圓上運(yùn)動(dòng)時(shí),證明:直線恒與圓相切.
【答案】(1)圓的方程為,且在圓上;(2)證明見解析.
【解析】試題分析:(1)已知點(diǎn)、的坐標(biāo),可求出直線的方程,可求出點(diǎn)的坐標(biāo),由圓的方程可知點(diǎn)的坐標(biāo),可求出以為直徑的圓的方程,將點(diǎn)的坐標(biāo)代入圓的方程,得在圓上;(2)要證明結(jié)論,需證明,可先設(shè)點(diǎn)坐標(biāo),可求點(diǎn)坐標(biāo),進(jìn)而可求點(diǎn)坐標(biāo),得與斜率,得得結(jié)論.
試題解析:(1)由,∴直線的方程為,
令,得,由,,則直線的方程為,
令,得,∴為線段的中點(diǎn),以為直徑的圓恰以為圓心,半徑等于,
所以,所求圓的方程為,且在圓上,
(2)設(shè),則,直線的方程為,
在此方程中令,得,
直線的斜率,
若,則此時(shí)與軸垂直,即,若,則此時(shí)直線的斜率為
∴,即,則直線與圓相切
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究型學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)的影響.部分統(tǒng)計(jì)數(shù)據(jù)如下表:
使用智能手機(jī) | 不使用智能手機(jī) | 合計(jì) | |
學(xué)習(xí)成績(jī)優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績(jī)不優(yōu)秀 | 16 | 2 | 18 |
合計(jì) | 20 | 10 | 30 |
附表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
經(jīng)計(jì)算,則下列選項(xiàng)正確的是( )
A.有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
B.有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響
C.有99.9%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
D.有99.9%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)求的展開式中的系數(shù)及展開式中各項(xiàng)系數(shù)之和;
(2)從0,2,3,4,5,6這6個(gè)數(shù)字中任取4個(gè)組成一個(gè)無(wú)重復(fù)數(shù)字的四位數(shù),求滿足條件的四位數(shù)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱柱中,為正方形,為菱形,,平面平面.
(1)求證:;
(2)設(shè)點(diǎn)、分別是,的中點(diǎn),試判斷直線與平面的位置關(guān)系,并說(shuō)明理由;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售某件商品的經(jīng)驗(yàn)表明,該商品每日的銷量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù)。已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克。
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)若該商品的成本為3元/千克,試確定銷售價(jià)格的值,使商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為3的菱形ABCD中,∠ABC=60°,平面ABCD,且,E為PD中點(diǎn),F在棱PA上,且.
(1)求證:CE∥平面BDF;
(2)求點(diǎn)P到平面BDF的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是某市環(huán)保局連續(xù)30天對(duì)空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù):
61 76 70 56 81 91 55 91 75 81
88 67 101 103 57 91 77 86 81 83
82 82 64 79 86 85 75 71 49 45
(Ⅰ)完成下面的頻率分布表;
(Ⅱ)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中的值;
(Ⅲ)在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,求這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間內(nèi)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com