已知橢圓
x2
2
+y2=1
的左右焦點(diǎn)分別為F1,F(xiàn)2,若過(guò)點(diǎn)P(0,-2)及F1的直線(xiàn)交橢圓于A(yíng),B兩點(diǎn),求△ABF2的面積.
由題意,得
∵橢圓
x2
2
+y2=1
的左焦點(diǎn)為F1(-1,0),點(diǎn)P(0,-2)
∴直線(xiàn)PF1的斜率為k=-2,得直線(xiàn)AB方程為y=-2(x+1),化簡(jiǎn)得y=-2x-2
y=-2x-2
x2
2
+
y2
1
=1
消去x,可得9y2+4y-4=0,
設(shè)A(x1,y1)、B(x2,y2),
∴y1+y2=-
4
9
,y1y2=-
4
9

因此,可得|y1-y2|=
(y1+y2)2-4y1y2
=
4
10
9

∵橢圓的焦距為|F1F2|=2
∴△ABF2的面積為S=
1
2
|F1F2|•|y1-y2|=
4
10
9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓有一個(gè)焦點(diǎn)為F1(-2,0),且經(jīng)過(guò)點(diǎn)(0,2),求此橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)分別為F1(-1,0)、F2(1,0),右準(zhǔn)線(xiàn)l交x軸于點(diǎn)A,且
AF1
=2
AF2

(Ⅰ)試求橢圓的方程;
(Ⅱ)過(guò)F1、F2分別作互相垂直的兩直線(xiàn)與橢圓分別交于D、E、M、N四點(diǎn)(如圖所示),試求四邊形DMEN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系xoy中,點(diǎn)P到兩點(diǎn)(-
3
,0),(
3
,0)
的距離之和等于4,設(shè)點(diǎn)P的軌跡為C,直線(xiàn)y=kx+2與C交于不同的兩點(diǎn)A,B.
(1)寫(xiě)出C的方程;
(2)求證:-1<
OA
OB
13
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若過(guò)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)且垂直于x軸的直線(xiàn)被橢圓截得的弦長(zhǎng)為a,則該橢圓的離心率為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知A,B,P為橢圓
x2
m2
+
y2
n2
=1(m,n>0)上不同的三點(diǎn),且A,B連線(xiàn)經(jīng)過(guò)坐標(biāo)原點(diǎn),若直線(xiàn)PA,PB的斜率乘積kPA•kPB=-2,則該橢圓的離心率為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線(xiàn)的實(shí)軸長(zhǎng)為12,焦距為20,則該雙曲線(xiàn)的標(biāo)準(zhǔn)方程為( 。
A.
x2
36
-
y2
64
=1
B.
x2
64
-
y2
36
=1
C.
x2
36
-
y2
64
=1
x2
64
-
y2
36
=1
D.
y2
36
-
x2
64
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知橢圓中心在原點(diǎn),F(xiàn)是焦點(diǎn),A為頂點(diǎn),準(zhǔn)線(xiàn)l交x軸于點(diǎn)B,點(diǎn)P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則①
|PF|
|PD|
;②
|QF|
|BF|
;③
|AO|
|BO|
;④
|AF|
|AB|
;⑤
|FO|
|AO|
,其中比值為橢圓的離心率的有(  )
A.1個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的焦點(diǎn)坐標(biāo)為F1(-5,0),F(xiàn)2(5,0),離心率e=
5
3
,P為橢圓上一點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若PF1⊥PF2,求S△PF1F2

查看答案和解析>>

同步練習(xí)冊(cè)答案