已知p:
1
2
≤x≤1,q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要條件,求實數(shù)a的值.
考點:必要條件、充分條件與充要條件的判斷,命題的否定
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:將命題轉(zhuǎn)化為集合,把充分與必要條件轉(zhuǎn)化為集合直接吧包含關(guān)系即可.
解答: 解:p:
1
2
≤x≤1,
q:x2-(2a+1)x+a(a+1)≤0?(x-a)[x-(a+1)]≤0,
令P={x|
1
2
≤x≤1},Q={x|(x-a)[x-(a+1)]≤0},
“若¬p是¬q的必要條件”?“p⇒q”?P?Q?
a≤
1
2
a+1≥1
?0≤a≤
1
2
,
故a的取值范圍是[0,
1
2
].
點評:本題借助必要條件的概念考查了一元二次不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,設(shè)曲線C1:ρ=2sinθ,C2:ρ=2cosθ分別相較于A、B兩點,則線段AB直平分線的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-x2+2x-2的單調(diào)遞減區(qū)間是( 。
A、(-∞,1]
B、[1,+∞)
C、(-∞,2]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(-1,1)上的函數(shù)f(x)=x-sinx,若f(a-2)+f(4-a2)<0,則a的取值范圍是( 。
A、(2,
5
B、(
3
,
5
C、(0,2)
D、(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:an•an+1=λ•2n.,n∈N*,λ≠0,且a1=
2

(1)求證:
an+2
an
=2;
(2)是否存在λ,使得{an}為等比數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式axy≤4x2+y2對于∈[1,2],y∈[2,3]恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,若sin(π-A)=
3
5
,tan(π+B)=
12
5
,則cosC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知頂點在坐標(biāo)原點,焦點為P(1,0)的拋物線C與直線y=2x+b相交于A,B兩點,|AB|=3
5

(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)求b的值;
(3)當(dāng)拋物線上一動點P從點A到B運動時,求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
x-y≥-1
x+y≤3
的解集記為D,由下面四個命題:
P1:?(x,y)∈D,則2x-y≥-1;
P2:?(x,y)∈D,則2x-y<-2;
P3:?(x,y)∈D,則2x-y>7;
P4:?(x,y)∈D,則2x-y≤5.
其中正確命題是(  )
A、P2,P3
B、P1,P2
C、P1,P3
D、P1,P4

查看答案和解析>>

同步練習(xí)冊答案