已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61,
(1)求
a
b
的夾角θ;        
(2)求|
a
+2
b
|的值.
考點:平面向量數(shù)量積的運算,數(shù)量積表示兩個向量的夾角
專題:平面向量及應用
分析:(1)利用數(shù)量積的定義及其運算性質(zhì)即可得出;
(2)利用數(shù)量積的定義及其運算性質(zhì)即可得出.
解答: 解:(1)∵|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61,
4
a
2
-3
b
2
-4
a
b
=4×42-3×32-4×4×3cosθ=61,
化為cosθ=-
1
2
,∴θ=
3

(2)|
a
+2
b
|=
a
2
+4
b
2
+4
a
b
=
42+4×32+4×4×3×(-
1
2
)
=2
7
點評:本題考查了數(shù)量積的定義及其運算性質(zhì),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若2x+y≥1,u=y 2-2y+x 2+6x,則u的最小值等于( 。
A、-
7
5
B、-
14
5
C、
7
5
D、
14
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,sinA=sinB是A=B的( 。
A、充要條件
B、充分非必要條件
C、必要非充分條件
D、既非充分條件又非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于關于x的不等式ax2-3x+6>4,-------(*)
(1)若(*)對于任意實數(shù)x總成立,求實數(shù)a的取值范圍;
(2)若(*)的解集為{x|x<1或x>b},求不等式ax2-(ac+b)x+bc<0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)滿足:對任意實數(shù)x,y,都有f(x)+f(y)=x(2y+1),求f(0),f(1)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知2cos(B+C)=1,b+c=3
3
,bc=4,求:
(1)角A的度數(shù); 
(2)邊a的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當x∈(0,+∞)時,f(x)=2x
(1)求f(log2
1
3
)的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-1次方的圖象過點(2,
1
2
),其中(a>0且a≠1).
(1)求a的值.
(2)若函數(shù)g(x)=x2+a,解關于t的不等式g(t-1)>g(3-2t).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用反證法證明:在一個三角形中,至少有一個內(nèi)角大于或等于60°.

查看答案和解析>>

同步練習冊答案