精英家教網 > 高中數學 > 題目詳情

【題目】一個生物研究性學習小組,為了研究平均氣溫與一天內某豆類胚芽生長之間的關系,他們分別記錄了4月6日至4月11日的平均氣溫x(℃)與該豆類胚芽一天生長的長度y(mm),得到如下數據:

日期

4月6日

4月7日

4月8日

4月9日

4月10日

4月11日

平均氣溫x(℃)

10

11

13

12

8

6

一天生長的長度y(mm)

22

25

29

26

16

12

該小組的研究方案是:先從這六組數據中選取6日和11日的兩組數據作為檢驗數據,用剩下的4組數據即:7日至10日的四組數據求出線性回歸方程.
(1)請按研究方案求出y關于x的線性回歸方程 = x+ ;
(2)用6日和11日的兩組數據作為檢驗數據,并判斷該小組所得線性回歸方程是否理想.(若由線性回歸方程得到的估計數據與所選的檢驗數據的誤差不超過1mm,則認為該方程是理想的)
參考公式:

【答案】
(1)解:∵ =11, =24,

= ,

= =﹣ ,

故y關于x的方程是: = x﹣ ;


(2)解:∵x=10時, = ,

誤差是| ﹣22|= <1,

x=6時, = ,誤差是| ﹣12|= <1,

故該小組所得線性回歸方程是理想的.


【解析】1、由求出題意可得,,由公式得出的值從而求出的值進而得到y(tǒng)關于x的線性回歸方程。
2、根據(1)能求出該小組所得線性回歸方程是理想的。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知f(n)=1+ + + +…+ ,g(n)= ,n∈N*
(1)當n=1,2,3時,試比較f(n)與g(n)的大小關系;
(2)猜想f(n)與g(n)的大小關系,并給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 有兩個極值點x1 , x2 , 且x1<x2 , 記點M(x1 , f(x1)),N(x2 , f(x2)).
(Ⅰ)求直線MN的方程;
(Ⅱ)證明:線段MN與曲線y=f(x)有且只有一個異于M、N的公共點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=x3﹣6x2+9x﹣abc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結論:
①f(0)f(1)>0;
②f(0)f(1)<0;
③f(0)f(3)>0;
④f(0)f(3)<0.
其中正確結論的序號是( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲乙兩位同學進行乒乓球比賽,甲獲勝的概率為0.4,現(xiàn)采用隨機模擬的方法估計這兩位同學打3局比賽甲恰好獲勝2局的概率:先利用計算器產生0到9之間取整數值的隨機數,制定1,2,3,4表示甲獲勝,用5,6,7,8,9,0表示乙獲勝,再以每三個隨機數為一組,代表3局比賽的結果,經隨機模擬產生了30組隨機數
102 231 146 027 590 763 245 207 310 386 350 481 337 286 139
579 684 487 370 175 772 235 246 487 569 047 008 341 287 114
據此估計,這兩位同學打3局比賽甲恰好獲勝2局的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2﹣2(a﹣2)x﹣b2+13.
(1)先后兩次拋擲一枚質地均勻的骰子(骰子六個面上分別標有數字1,2,3,4,5,6),骰子向上的數字一次記為a,b,求方程f(x)=0有兩個不等正根的概率;
(2)如果a∈[2,6],求函數f(x)在區(qū)間[2,3]上是單調函數的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =(1,2), =(2,﹣3).
(1)若 垂直,求λ的值;
(2)求向量 方向上的投影.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y= +lg(﹣x2+4x﹣3)的定義域為M,
(1)求M;
(2)當x∈M時,求函數f(x)=a2x+2+34x(a<﹣3)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合A={x|a﹣1<x<a+1},B={x|x<﹣1或x>2}.
(1)若A∩B=,求實數a的取值范圍;
(2)若A∪B=B,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案